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This article reviews research at the intersection of genetics and social science, a
field of research sometimes called social-science genomics.1 In recent years, most
areas of human genetics have experienced rapid progress, driven primarily by the
extraordinarily steep declines in the costs of measuring genetic variation. The
first human genome sequence was successfully completed a little over 20 years
ago (Venter et al., 2001; International Human Genome Sequencing Consortium,
2001). Since then, the cost of sequencing a human genome has been falling at a
rate faster than Moore’s law, from many millions of dollars in the early 2000s to a
few hundred dollars today (Wetterstrand, 2023). The cost of using so-called geno-
typing arrays, a less expensive technology for measuring most common genetic
variation across individuals, has declined at a similar rate. These declines in cost
have led to an explosion of available datasets with comprehensively genotyped
individuals.
These increases in sample sizes have fueled brisk advances in knowledge about

the links between particular genetic variants—regions of DNA that differ across in-
dividuals—and phenotypes, that is, measurable characteristics or outcomes (Viss-
cher et al., 2017, 2012). These advances have primarily come from research designs
called genome-wide association studies (GWASs), which produce estimates of the
association between individual genetic variants and a phenotype of interest. Most
GWASs have been conducted by medical geneticists whose primary focus is on
disease, but the number of published GWASs of social and behavioral phenotypes
has also been growing steadily. For applications in the social sciences, we contend
that the main value of a GWAS is that the summary statistics it produces can be
used to construct weights for DNA-based predictors of various phenotypes. Each
such predictor is calculated as a weighted average of a person’s genetic variants
(typically millions, selected from across the genome), with the weight for each
variant derived from its GWAS summary statistics.
In the literature, numerous labels––including polygenic scores (PGSs) or poly-

genic risk scores (PRSs)—have been used to describe these predictors. Following
Becker et al. (2021), our preferred term for them is polygenic indexes (PGIs).
Among the phenotypes that have the most highly predictive PGIs are (R2’s cor-
respond to currently attainable level of predictive power of these PGIs in samples
of European genetic ancestries): height (R2 ≈ 0.45; Yengo et al. 2022), body mass
index (R2 ≈ 0.15; Zheng et al., 2022), educational attainment (PGI R2 ≈ 0.15;
Okbay et al. 2022), age at first menses among women (PGI R2 ≈ 0.12; Becker

1Different names for this new area of research have been adopted in different social-science disciplines,
reflecting their focus on particular applications and methodological approaches. In economics, genoe-
conomics (Benjamin et al., 2007); in political science, genopolitics (Fowler and Dawes, 2013); and in
sociology, sociogenomics or social genomics (Mills and Tropf 2020; Conley 2016; however, sociogenomics
and social genomics also describe a separate field of research on how social processes affect gene expres-
sion, as in Robinson, Grozinger and Whitfield, 2015). Psychology has a longstanding tradition of research
on the role of genetics called behavior genetics (for a history, see Loehlin, 2009), and the psychologically
oriented research we mention in this review falls under that rubric. Although this review reflects our
economics perspective and the applications we discuss are economics-oriented, we use the more general
term, social-science genomics, which may have originated in Rietveld et al. (2013), to emphasize the
commonality of theory, data, and tools—which are what we focus on in this review.
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et al., 2021) and self-rated health (PGI R2 ≈ 0.05; Becker et al., 2021).
The proliferation of genetic data is rapidly opening up new opportunities for

social-science genomic research. Becker et al. (2021) provides an overview of some
of the most commonly used datasets. By, far the most widely used today is the UK
Biobank (Bycroft et al., 2018), which stands out primarily in terms of its sample
size (roughly 500,000 individuals). Several commonly used datasets in economics
also have genome-wide data on many of their participants, including the Health
and Retirement Study (HRS), the English Longitudinal Study of Ageing (ELSA),
the Panel Study of Income Dynamics (PSID), and the German Socio-economic
Panel (GSOEP).
Most commonly, social-science genomics research analyzes PGIs constructed

in a dataset such as one of those just mentioned (using PGI weights calculated
from a GWAS conducted in an independent, non-overlapping, sample). Prior
to the availability of measures of genetic variation, most research treated ge-
netic influences as latent variables and sought to infer their effects by contrasting
the phenotypic resemblance of twins, adoptees, and other kinships (Goldberger,
2005; Sacerdote, 2011; Cloninger, Rice and Reich, 1979). By contrast, PGIs are
observed variables that can be incorporated directly into analyses.
In light of the advances over the past few years, we believe the time is ripe for

a review paper. Two prior review papers in general-interest economics journals
(Beauchamp et al., 2011a; Benjamin et al., 2012) were published before the first
large-scale GWAS of a social-science phenotype (Rietveld et al., 2013). A third
(Dias Pereira et al., 2022) provides an accessible, succinct and non-technical in-
troduction to a subset of the topics we discuss here. More recent reviews have
been published in sociology (Freese, 2018; Braudt, 2018; Martschenko, Trejo and
Domingue, 2019; Conley, 2016) and psychology (Plomin et al., 2016). Relative to
these, we seek to spell out connections to relevant underlying genetic theory more
explicitly, and to provide a more self-contained and comprehensive treatment of
technical details. Most of the applications we highlight are also from economics.
Although our review is primarily oriented toward economists, it is written in the
hope that the material will also be of utility to researchers from other disciplines.
The theoretical focus of our paper makes it a natural companion to other texts
whose main focus is on a number of important practical issues that arise in em-
pirical analyses of large samples of comprehensively genotyped subjects (e.g., a
recent textbook by Mills, Barban and Tropf, 2020).
This review highlights two recent trends in social-science genomics (and human

genetics research more broadly). The first is an increased appreciation of the value
that analysis of large samples with genotyped first-degree relatives can have in
settings where the goal is to make causal inferences about genetic variation in
general, and PGIs in particular. Geneticists have long understood that genes are
transmitted from parents to offspring following laws that, in quasi-experimental
parlance, can be leveraged to yield a powerful natural experiment enabling the
identification of causal effects. Long before the modern GWAS era, Fisher (1952,
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p. 7) remarked, “The different genotypes possible from the same mating have
been beautifully randomised by the meiotic process. A more perfect control of
conditions is scarcely possible, than that of different genotypes appearing in the
same litter.” This longstanding insight forms the basis of classical, pedigree-based
analyses (e.g., Spielman, McGinnis and Ewens, 1993), but it has only recently
been incorporated into the era of GWASs and PGIs. The main reason is that
family-based samples are required to isolate the source of variation in genotype
that is randomly assigned, and until recently, family samples large enough to
produce estimates with meaningful precision were simply unavailable.
The second trend is conducting GWASs in samples from non-European-genetic-

ancestry populations and constructing PGIs for those populations. The large ma-
jority of existing GWASs have been conducted in samples from European-genetic-
ancestry populations (Mills and Rahal, 2019; Abdellaoui et al., 2023). For a vari-
ety of reasons that we discuss—some of them genetic, some non-genetic—findings
from a population with one ancestry do not always generalize well to populations
with different ancestries. An important example of this so-called “portability
problem” arises with PGIs: decay in prediction accuracy is often substantial when
a PGI constructed using a training sample of one genetic ancestry is evaluated
in a validation sample composed of individuals from another genetic ancestry.
Extending GWASs and PGIs to other populations is an important direction for
ongoing research, both in order for the benefits of findings from genetic research
to be distributed more equitably (Martin et al., 2019; Fatumo et al., 2022) and
for social scientists to be able to use PGIs in a broader range of applications.
The main goal of this review is to bring interested researchers to the frontier of

social-science genomics. To that end, we aim to provide a self-contained, stream-
lined, and integrated development from the underlying biology and definitions
of genetic concepts, through GWAS, to PGIs and their applications in the so-
cial sciences. Another goal of this review is to offer a rigorous exposition using
a unified framework that clarifies the assumptions underlying methods and the
intuitions underlying key results. Throughout the review, we emphasize issues of
causal inference and appropriate interpretation of genetic effects. In all of these
respects, we believe our review is unique.
To keep the paper focused on getting to PGIs and their applications, we omit

detailed discussions of a number of topics relevant to social-science genomics. For
example, we do not discuss traditional twin, family, and adoption studies, except
to clarify how these methods relate to the unified framework; these methods, and
research linking genetic variation to social and behavioral phenotypes prior to
GWAS, are covered in earlier reviews (e.g., Goldberger 1978; Otto, Christiansen
and Feldman 1995; Beauchamp et al. 2011a; Benjamin et al. 2012; Cesarini and
Visscher 2017). Similarly, we only briefly discuss research on gene expression and
epigenetics. Similar caveats apply to research by economists on evolution and
economic growth (for a review, see Ashraf and Galor, 2018) and work on com-
parative economic development that uses genetic variation as an empirical proxy
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for diversity (e.g., Spolaore and Warcziag, 2009; Arbatli et al., 2020). Finally,
we do not address the new economic questions that arise from the availability
of PGIs, such as their impact on insurance markets (see, e.g., Karlsson Linnér
and Koellinger, 2022), their use during in vivo fertilization to select embryos with
lower disease risks or other characteristics (see, e.g., Turley et al. 2021b; Meyer
et al. 2023b), or their potential role in personalized medicine.
This review is organized as follows. Section I begins with a rudimentary genetics

primer. Section II lays out a general theoretical framework that is helpful for
clarifying what it means for a genetic variant to cause phenotypic variation. We
also use the framework to clarify some subtle interpretational issues that are prone
to misunderstanding. In Section III, we turn to estimation of genetic effects.
Having laid the groundwork in prior sections, Section IV defines, interprets, and
analyzes PGIs. In Section V, we illustrate seven applications of genetic data
in economics. In Section VI, we outline current trends in genetics research and
what they imply about future applications in the social sciences. We conclude by
highlighting some of the ethical, policy, and communication challenges that are
intrinsic to research at the intersection of genetics and social science.

I Genetics Primer

This section provides genetics background relevant to what follows. Some read-
ers may wish to skip the section and refer back to it as needed. Because we aim
to provide close to the minimum amount of information needed to fully under-
stand assumptions made elsewhere in the paper, we omit several nuances.2 For
readers interested in additional details, we recommend consulting a textbook in
molecular genetics such as Strachen and Read (2018) and in population genetics
such as Gillespie (2004).

A The Genome and SNPs

The genome usually refers to a person’s genetic material at conception (prior
to any mutations that occur throughout a person’s life). Almost every cell in
the body contains an exact copy of the entire genome.3 The human genome
has ∼21,000 genes. Genes contain sequences of DNA that code for amino acids,
the building blocks of the body’s proteins. Genes constitute only ∼2% of the
genome. A much larger fraction of the genome affects when and how much genes
are expressed (see Section I.G).
The genome is divided across 23 pairs of chromosomes, one sex chromosome

pair and 22 non-sex chromosome pairs called autosomes. One chromosome in

2For example, we ignore mitochondrial DNA, which is technically part of the human genome but
resides in mitochondria (outside the cell nucleus) and is inherited exclusively from the mother. We
ignore it because mitochondrial DNA only contains 13 of the ∼21,000 human genes and is not generally
included in the genotyping data we discuss.

3One important exception is germ cells, discussed in Section I.B. We also ignore mutations that cause
small differences in DNA across cells.
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each pair was inherited from the individual’s mother (the maternal chromosome),
and the other from the individual’s father (the paternal chromosome).
Each chromosome consists of a pair of DNA strands that are bound together.

Each strand is composed of a sequence of nucleotide molecules, referred to as
bases. There are four bases: guanine (abbreviated G), cytosine (C), thiamine
(T), and adenine (A). DNA bases always pair with their complementary base on
the other strand: C with G, and A with T. Since the information is redundant,
one strand is chosen by convention to be the reference strand, and the base pair
is described by the base on the reference strand.
Each location in the genome can be described by its chromosome and base-pair

position. At each position, an individual has one base pair (G, C, T, or A) from
the (reference strand of the) maternal chromosome and one from the paternal
chromosome. With rare exceptions, the biological function of the base pair does
not depend on whether it was inherited from the mother for father. Thus, the
genotype at a position—the composition of the genome at that position—can be
described by a set of two bases (each on its reference strand), such as GC or TT,
without reference to which was inherited from which parent.
By sequencing and assembling the genomes of several individuals, the Human

Genome Project created reference human genomes, which serve as standard repre-
sentations. At 99.8-99.9% of loci, depending on a person’s genetic ancestry, there
is no genetic variation from the reference human genome (Nurk et al., 2022). The
parts of the genome that vary across individuals are called polymorphisms, or
genetic variants. Definitions vary, but according to a typical definition, a rare
variant is a genetic variant in which 99% or more of individuals have the same
version of the genetic variant, and a common variant is one in which fewer than
99% of individuals have the same version.
People may vary in complex ways from a reference genome, such as due to

sections being duplicated, deleted, or inverted. The simplest variation from the
reference is a single nucleotide difference, called a SNP (single-nucleotide poly-
morphism). For example, the reference genome would have an A base, whereas
some individuals would have a T base. One comprehensive analysis of global ge-
netic variation (The 1000 Genomes Project Consortium, 2015) found that SNPs
comprise roughly 95.5% of variants.
The bases that can occur at a SNP are called alleles, and one allele is inherited

from each parent. At the vast majority of SNPs, there are only two alleles of non-
negligible frequency in the population (either of which could be inherited from
either parent). Whichever allele is less common in the population is called the
minor allele. An individual’s SNP genotype is often summarized by the minor
allele count: 0, 1, or 2. SNP data for an individual typically comes as a vector
of minor allele counts, with each element corresponding to a measured SNP at a
particular locus. Following standard terminology, we will often refer to the minor
allele count as the genotype and the vector of minor allele counts as the genotype
vector.
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B Genetic Inheritance

For reproduction, individuals produce germ cells (sperm in males, eggs in fe-
males). Unlike other cells, germ cells contain only one copy of each chromosome.
Meiosis is a type of cell devision that produces germ cells, each containing a ran-
dom half of the chromosome pair that a parent carries. An offspring is conceived
when one germ cell from the father and one from the mother fuse. The resulting
child then has a chromosome pair, with one chromosome coming from the father
and one from the mother.
During meiosis, randomness is introduced in two distinct stages. First, within

each chromosome pair, the chromosomes’ arms cross a random number of times
at random loci, and the chromosomes swap their DNA after the crossing points.
This process is called crossing over, and the transfer of chunks of DNA is called
recombination. Second, independently across the 23 chromosome pairs and after
recombination, one among each pair is, with equal probability, transmitted to a
given germ cell. This process is called Mendelian segregation.
These random processes have some important implications for our purposes.

Fixing any given SNP, conditional on the parental genotypes, the offspring re-
ceives one of each parent’s two alleles, with equal probability. For any two SNPs
on different chromosome pairs, the transmission of alleles across the two SNPs
are independent random processes. Finally, for any two SNPs on the same chro-
mosome pair, the probability that alleles on the same parental chromosome are
transmitted to the offspring is higher the closer the two loci are. This correlated
inheritance of alleles on the same parental chromosome is called linkage.

C Linkage Disequilibrium (LD)

Linkage disequilibrium (LD) refers to correlation between the genotypes of ge-
netic variants.4 Under random mating, the only source of LD is linkage. In
that case, no LD is expected between genetic variants on different chromosomes.
Within each chromosome, the LD between two variants is decreasing with their
physical distance. For nearby variants on a chromosome, the LD due to linkage
can be very high, often reaching one or nearly one. Regions of the genome that are
essentially perfectly correlated with each other in a given population are called
haplotype blocks, and the different versions of a block effectively form a single
genetic variant for that block.

4In other areas of genetics, LD refers more generally to the statistical association between genotypes,
and measures other than correlation are sometimes used. Originally, LD was more specifically related to
linkage than it is in modern usage. The concept of LD arose from considering what would happen after
repeated recombinations. For example, beginning with a population where some individuals have an A
allele at locus 1 and a T allele at locus 2 and other individuals have a C allele at locus 1 and a G allele
at locus 2. Recombination between the loci will reduce the association between having an A allele and
a T allele. In the limit, the genotype at locus 1 will become statistically independent of the genotype at
locus 2 and remain so thereafter. This equilibrium state is called “linkage equilibrium.” LD was meant
to refer to deviations from that state (Sved and Hill, 2018). In a randomly mating population, loci on
different chromosomes are expected to be in linkage equilibrium.
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Non-random mating generates LD with different properties. Consider assor-
tative mating : individuals who have some characteristic are more likely to mate
with other individuals who have that characteristic. Most assortative mating
processes that cause spousal resemblance on a phenotype will also induce a cor-
relation between spousal genes associated with the phenotype. One example is
height. Since genetic variants associated with being taller are scattered through-
out the entire genome, assortative mating at the genetic level will lead to positive
LD between height-associated alleles, including those located on different chro-
mosomes. Another, related form (e.g. Bergstrom, 2013) of non-random mating
is population structure: individuals within a subpopulation—e.g., geographic re-
gion, or with a shared ethnicity or language—tend to mate with each other. In
that case, alleles that happen to be more common within the subpopulation will
become correlated, regardless of their location in the genome.

D Complex Phenotypes

A trait, or phenotype, is any measurable characteristic, behavior, or outcome of
an organism. A phenotype is called monogenic if most or all of the variation is
controlled by a single gene. A phenotype is called polygenic, or complex, if it is
affected by many genetic variants, not restricted to a single gene. Intermediate
cases, where genetic variation is controlled by several genetic variants, also exist,
as do hybrid cases. Late-onset Alzheimer’s disease is an example of the latter: a
single gene, APOE, has a relatively large effect, but most of the genetic influence
is polygenic (Lambert et al., 2013).
Monogenic traits are featured in standard introductions to genetics. Classic

examples dating back to Gregor Mendel’s original experiments (Mendel, 1866)
include whether a pea is green or yellow, or whether a pea is smooth or wrin-
kled. Monogenic diseases include phenylketonuria and Huntingdon’s disease. Un-
til roughly 2005 (when GWASs began to be conducted), progress in identifying
specific genetic variants was restricted to monogenic traits, whose inheritance
patterns can be traced through family pedigrees.
Most diseases and other phenotypes—including virtually all phenotypes of in-

terest to social scientists—are complex phenotypes. Examples include height,
educational attainment, and liability to diseases such as schizophrenia and Type
2 diabetes. Twin, family, and adoption studies have focused on complex phe-
notypes. Much recent progress in medical genetics has been in the domain of
complex phenotypes, based on methods such as GWAS. This paper focuses on
theory and methods relevant to complex phenotypes.
As a broad generalization, genetic influences on monogenic and complex pheno-

types operate through different biological mechanisms. The variants that deter-
mine monogenic traits typically have a large impact on a particular gene/protein,
such as causing the protein not to function at all. By contrast, most common
genetic variants that affect complex phenotypes are in loci outside of genes and
are believed to operate through regulating gene expression, typically with long
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and complicated causal pathways from genetic variation to phenotype. As a hy-
pothetical example, a genetic variant may affect brain development, which affects
a child’s propensity to be obedient, which affects how teachers react to the child,
which affects their interest in school and, ultimately, their educational attain-
ment. While it has been possible to completely characterize the causal (biologi-
cal) pathways for some monogenic traits, studies of causal pathways for complex
traits instead typically focus on describing a particular part of the causal chain
(e.g., gene expression levels, or mediating psychological characteristics).

E Mutations, (Natural) Selection, and Genetic Drift

The genetic variation present in a population is the result of four processes:
mutation, recombination, (natural) selection, and genetic drift. Mutations are
changes in DNA that occur due to internal or external mutagenic agents (e.g.,
ultraviolet light) or errors that occur when DNA is copied. Mutations in germ
cells can be transmitted to future generations. A mutation not present in an indi-
vidual’s parents at conception is called a de novo mutation. Empirical estimates
suggest that most individuals carry 40-120 de novo mutations (e.g., Figure 1 in
Jónsson et al., 2017), a tiny fraction of the 6 billion parental alleles. Although
each individual carries only a small number of de novo mutations, most of these
will not be present in any appreciable frequency in other individuals. This fact,
combined with the recent increase in the human population, explains why most
genetic variations are rare (Uricchio, 2020). Recombination––described above
in Section I.B—generates novel combinations of alleles at different loci, thereby
increasing the diversity of haplotypes (multi-locus genotypes).
Selection is the change in allele frequencies due to their association with fit-

ness. Fitness is a concept in evolutionary biology that quantifies the reproductive
success of an organism and its descendants. Fitness is typically defined in terms
of the number of descendants an organism has in the next and/or subsequent
generations, as well as the time between generations, with larger numbers of de-
scendants and shorter generation times indicating higher fitness. Alleles that are
positively associated with fitness will tend to increase in frequency over time,
whereas alleles that are negatively associated with fitness will tend to decrease in
frequency over time.
Selection is categorized into different types. For example, directional selection

uniformly favors an increased or decreased level of the phenotype; stabilizing
selection favors some particular (optimal) level of the phenotype; and diversifying
selection favors extreme levels of the phenotype. Which type of selection occurs
depends on how phenotype values map onto fitness.
If a phenotype is subject to either directional or stabilizing selection, common

variants will have relatively weak effects on the phenotype (e.g., Sanjak et al.,
2017; Simons et al., 2018). For example, consider a new mutation that has a large
effect on the phenotype. Stabilizing selection will tend to keep that mutation at
low frequencies, regardless of the mutation’s direction of effect on the phenotype.
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Directional selection will push the frequency toward 0% or 100%, depending on
the mutation’s direction of effect (for the possible role of directional selection in
the evolution of economic preferences, see, e.g., Galor and Moav, 2002; Galor and
Michalopoulos, 2012; Galor and Özak, 2016; Galor and Savitskiy, 2018).
Genetic drift is the random fluctuation over the generations in allele frequen-

cies in a population of finite size, due to randomness (i.e., factors unrelated to
genotype) in individuals’ number of offspring and randomness in which alleles are
transmitted to offspring. In contrast to natural selection, which systematically
changes allele frequencies, the changes in allele frequencies due to genetic drift are
random walks. For the vast majority of genetic variants, which are not subject to
strong natural selection, genetic drift is a stronger influence on allele frequencies
than natural selection. Thus, because of genetic drift, if a single population splits
into two populations that do not mate with each other for many generations,
allele frequency and LD differences between the populations are measures of how
long ago the populations split (see Section III.D).

F Genomic Data: Sequencing and Genotyping

For research purposes, genetic data are typically obtained from a saliva or blood
sample. The two main technologies for measuring DNA are genome sequencing
and genotyping arrays.
Genome sequencing, or sequencing, refers to reading segments of DNA sampled

from the genome sequence. Sequencing technologies differ from each other in
terms of coverage (how much of the genome is read) and accuracy (related to how
many times each segment is read on average, to distinguish true genetic variations
from sequencing errors). For example, sequencing for clinical diagnostics has high
coverage of the clinically relevant genetic variants and is usually highly accurate.
By contrast, low-pass sequencing—which is much less expensive and adequate for
many research purposes—has low coverage and lower accuracy. For most common
genetic variants, the accuracy of low-pass sequencing can be greatly improved by
using the imputation strategies described below (see Li et al., 2021).
Rather than from sequencing, most human genetic data today comes from SNP

arrays, which measure a pre-specified set of SNPs. The array is chosen to have
high coverage of the haplotype blocks and other common genetic variants in a
particular population (or across several populations). Thus, the SNPs measured
on an array are correlated with, or “tag,” the vast majority of variation in the
genome that is due to common variants (including common, non-SNP genetic
variants). Typical arrays used today measure roughly 1 million SNPs.
Using a reference panel—a dataset containing high-coverage, high-accuracy

whole-genome sequencing data on a sample of individuals—SNP array data can
be used to impute genotypes not included on the array. The reference panel is
used to infer the underlying haplotypes of the SNP genotypes, where the missing
genotypes of unmeasured SNPs are “filled-in” (probabilistically) using the refer-
ence haplotypes (van Leeuwen et al., 2015). When the reference panel closely
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matches the target sample in genetic ancestry, the imputation can be highly ac-
curate (see, e.g., Marchini and Howie, 2010). For example, in the UK Biobank,
for 98.5% of genetic variants with frequency above 0.1%, the imputation captures
at least 80% of the variance.
Often, researchers wish to jointly analyze genetic data collected from different

genotyping arrays. This creates a problem because the set of SNPs differs across
arrays. The solution is to use a reference panel to impute the genotypes of a
common set of SNPs, and then conduct analysis on the imputed data. The most
common reference panels used today for this purpose are the 1000 Genomes (The
1000 Genomes Project Consortium, 2015), the HRC (Loh et al., 2016; McCarthy
et al., 2016), and TOPMed (Taliun et al., 2021). Starting with roughly 1 mil-
lion directly measured SNPs, typical raw imputed genotype data today contains
tens of millions of SNPs. After applying standard quality control filters (e.g.,
Winkler et al., 2014)—such as dropping SNPs with insufficiently high imputa-
tion accuracy—the number of imputed SNPs remaining is usually around or in
excess of 10 million. In subsequent sections, when we refer to measured SNPs,
we really mean SNPs whose allele count is either observed directly or imputed
with high accuracy. The same problem (different genetic variants are measured
across individuals) and solution (genotype imputation) arises with sequencing.
For example, low-pass sequencing can measure 50 million or more base pairs in
a given individual, but these are essentially randomly sampled from across the
genome, with little overlap from one individual to the next. After imputation to
the set of SNPs in a reference panel, however, the same SNPs are available across
individuals, and the data can be jointly analyzed with the data from SNP arrays
that have been imputed to the same reference panel.
Like sequencing technologies, SNP array technologies have experienced sus-

tained, rapid declines in cost over the past few decades. Almost all data used in
genome-wide association studies (see Section III.E) have been from SNP arrays
because sequencing has been much more expensive. However, today the cost of
low-pass sequencing is the same as genotyping, both roughly $30 per participant,
and produces data that are at least as good (Li et al., 2021). We anticipate that
datasets will increasingly switch toward sequencing technologies in the coming
years.

G Gene Expression and Epigenetics

Gene expression is when a protein is produced based on the amino acid sequence
coded by a gene. Where, when, and how much a gene is expressed depends on
many factors, including epigenetic modifications, discussed next. Gene expression
can be measured using protein levels in a cell or using the molecules produced
from DNA that are ultimately translated into protein, called messenger RNA.
Epigenetic modifications are molecules that attach to the genome, thereby pro-

moting or suppressing gene expression (but not affecting the sequence of base
pairs in the genome). The set of epigenetic modifications across the genome is

10



called the epigenome. Epigenetic modifications drive some crucial biological pro-
cesses, such as the differentiation of a stem cell into a particular cell type (brain
cell, muscle cell, skin cell, etc.). Aging (e.g., Chen et al., 2016) and certain envi-
ronmental exposures, such as smoking (e.g., Gao et al., 2015), are associated with
changes in the epigenome. There are several technologies for measuring different
types of epigenetic modifications.
Gene expression and epigenetics are large, important areas of research. Re-

search that relates gene expression and epigenetics with behavioral phenotypes
faces two special challenges that do not arise in research that relates genotypes
with behavioral phenotypes. First, gene expression and epigenetic modifications
are different across cell types and across cells. For most research on behavior,
the most relevant cells are in the brain, but the available sample sizes of brain
cells are small and the cells are from individuals who have died, which limits
the research questions that can be addressed. Second, it is more difficult to
identify causal effects of gene expression and epigenetic modifications on social
and behavioral phenotypes because there is no natural experiment analogous to
Mendelian segregation. Moreover, gene expression and a phenotype may mutually
affect each other and may both be affected by third variables. Nonetheless, using
quasi-experimental approaches, there is active progress studying the causal effects
of behaviors and the social environment on gene expression (e.g., Nelson-Coffey
et al., 2017) and epigenetics (e.g., Schmitz and Duque, 2022).

II Theoretical Framework: Genetic Effects

In this section, we lay out a theoretical framework for understanding the rela-
tionship between genetic variants and behavior. The framework builds on classic
treatments in Fisher (1918) and Falconer (1960). Relative to this earlier work,
we have clarified the assumptions and interpretation of the framework, especially
when and how it can be interpreted causally, by using modern conceptual appa-
ratus such as the potential outcomes notation (e.g., Rubin, 1974).

A Setup

We denote individual i’s genotype at genetic variant j by xij ∈ {0, 1, 2} and
the individual’s vector of genotypes at all SNPs by xi = (xi1, xi2, . . . , xiJ). When
there is no risk of confusion, we refer to this vector as i’s “genotype.” Crucially
for defining the theoretical concepts in this subsection, we assume this vector
includes all genetic variants in the genome. In subsequent sections, we discuss the
challenges that arise in practice from observing only a subset of genetic variants.
(Implicitly, this setup also incorporates the simplifying assumption that each
genotype is fully characterized by a reference allele count equal to 0, 1 or 2.)
For simplicity, we also restrict our discussion to genetic influences on complex
phenotypes (see Section I.D) that can be treated as continuous variables, such as
height, educational attainment or neuroticism.
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We denote individual i’s phenotype value by yi. Individual i’s potential outcome
for genotype x is denoted yi (x). The causal effect for individual i of changing
from genotype x to genotype x′ is yi (x

′) − yi (x). These causal effects can be
understood as the outcomes of an experiment (hypothetical in humans) where the
genotype is modified at conception. For individual i, only the potential outcome
at the individual’s actual genotype, yi = yi (xi), is observed. Because causal
effects for an individual cannot be identified, we focus on average causal effects
in some population of individuals.
Throughout this section, we focus on population parameters, deferring esti-

mation of parameters from a sample until Section III. Thus, when we refer to
the distribution of genotypes xi in the population, it corresponds to the true
probability of observing each xi, not the frequency in a particular sample.

B The General Framework

Consider a large population of individuals, each of whom has a complete set of
potential outcomes for every possible genotype, {yi (x)}, and a genotype, xi. The
average causal effect in the population of changing from genotype x to genotype
x′ is

E
[
yi
(
x′)− yi (x)

]
,

where yi (x
′) − yi (x) is the causal effect on individual i. We define the genetic

factor as the mean potential outcome in the population for genotype x, denoted
G (x) ≡ E [yi (x)] . In words, G (x) is what the mean phenotype in the population
would be if we intervened at conception and changed everyone’s genotype to x.
It follows from this definition that, for each x, each i’s potential outcome can be
written as

(1) yi (x) = G (x) + νi (x) ,

where νi (x) is the deviation of individual i’s potential outcome from the popu-
lation mean. All factors causing the same genotype to lead to different outcomes
for different individuals, including different exogenous environmental exposures,
gene-environment interactions, and measurement error in y that is independent of
genotype, are captured by νi (x). It follows from the properties of the conditional
expectation that E [νi (x) |x] = 0.
Informally, heritability refers to the fraction of variance in the phenotype that

is due to genetic variation in the population. Several formal definitions have been
proposed; we review the main ones here and in Sections II.C and II.I. The most
inclusive notion is called broad-sense heritability, denoted H2. It is defined as the
fraction of variance in the phenotype values across individuals explained by the
genetic factor, given the distribution of xi in the population:
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H2 ≡ Var (G (xi))

Var(yi)
,

where the variances are taken over the actual distribution of xi (and yi = yi (xi))
in the population. Heritability is sometimes treated as a property of the pheno-
type. In fact, it should not be thought of as a structural parameter but rather
a descriptive statistic in a particular population. Heritabilities can vary across
time, place, and people for a variety of reasons that include differences in G (x),
νi (x) (and hence, yi), and/or differences in the distributions of xi and νi (x) .

C The Additive Model

In the general framework, the genetic factor G (x) may be an arbitrary function.
In practice, researchers almost always work instead with a linear model, which is
referred to as the additive model. The additive model is, in a specific sense derived
below, a best linear approximation to the genetic factor, given the distribution of
genotypes in the population.
Without loss of generality, we assume in all that follows that y and xi have

been centered to have mean zero. The variance-covariance matrix of the actual
genotypes in the population, Σ ≡ Var (xi) = E [xix

′
i], is called the linkage dis-

equilibrium (LD) matrix. Its diagonal elements correspond to the variances of
each genotype. Each off-diagonal element corresponds to the LD between a pair
of genotypes. For simplicity, we assume the LD matrix is of full rank.
The additive genetic factor is defined as the fitted population regression func-

tion from regressing G (x) onto x:

(2) g (x) = xβ,

where β ≡ argminbE (G (xi)− xib)
2 and the expectation is taken with respect

to the distribution of xi in the population. If the number of non-zero elements of
β is large and their magnitudes are small, then by the central limit theorem, the
additive genetic factor is approximately normally distributed in the population.
Unlike the function G (x), the regression function g (x) depends on the population
distribution of xi. An important implication is that, in populations with different
LD patterns, the vectors β will differ (even if their G (x)’s are identical). The error
from approximating the genetic factor by the additive genetic factor, N (xi) ≡
G (xi) − g (xi), is called the non-additive genetic factor. The deviations from
linearity captured by the non-additive genetic factor are categorized into two
types: dominance and epistasis. Dominance refers to non-linearity in the effects of
a genetic variant. Epistasis (or gene-gene interaction effects) refers to interactions
between the genotypes of two or more genetic variants.5 By the properties of linear

5To formalize dominance, for each variant j = 1, 2, ..., J , define i’s 1×2 vector γij = (1 {xij = k})2k=1
where 1 (·) is the indicator function. Stacking the J vectors horizontally yields i’s “extended genotype
vector” Γi = {γi1, γi2, ..., γiJ}. Then, in analogy with the derivation of the additive genetic factor above,
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regression, the vector of N (xi) across individuals is orthogonal to span ({xi}i).
In most of what follows, our focus is on the additive model:

(3) yi (x) = xβ + ϵi (x) ,

where the error term is ϵi (x) = N (x)+νi (x). Since νi (x) may not be orthogonal
to span ({xi}i) ,ϵi (x) need not be either. The additive genetic factor g (x) = xβ
can be interpreted as the best linear approximation (in the sense of projection)
of the genetic factor. The elements of the vector β can be interpreted as the
average causal effects of the genotypes, given the population distribution of xi. It
is sometimes stated that the additive model assumes away dominance, epistasis,
and gene-environment interactions. But as our derivation makes clear, gene-
environment interactions are captured by νi (x), whereas dominance and epistasis
are captured by N (x). Hence, the parameter vector β is well defined without
imposing any strong assumptions about non-additive genetic effects, or the nature
and extent of gene-environment interactions.
The narrow-sense heritability, denoted h2, is defined as the fraction of variance

in the population explained by the additive genetic factor, given the distribution
of xi in the population:

h2 ≡ Var (g (xi))

Var(yi)
.

Like broad-sense heritability, narrow-sense heritability depends on both the phe-
notype and the population. By construction, narrow-sense heritability is weakly
smaller than broad-sense heritability, and strictly smaller in the presence of dom-
inance or epistasis.
For polygenic phenotypes, there are theoretical reasons to expect that narrow-

sense heritability h2 will be close to, or only moderately smaller than, broad-sense
heritabilityH2, despite the many known examples of biologically meaningful dom-
inance and epistatic deviations (for a review, see Hill, Goddard and Visscher, 2008;
see also Mäki-Tanila and Hill, 2014). For example, one reason why dominance
deviations are unlikely to explain much of the phenotypic variation is statistical.
Consider dominance deviations in a single-variant model where the genetic vari-
ant’s minor allele a has frequency p. In a large population with random mating,
the frequency of individuals with genotype aa will be p2. This frequency will be
very low if p is small, as is true for most genetic variants under realistic allele
frequency distributions (see Section I.E). For those genetic variants, most of the
variance in the phenotype will be due to individuals with the other two geno-
types, AA and Aa; therefore, the regression model (3) will mostly just try to fit
the phenotype values for the genotypes AA and Aa, and in doing so will explain

let h (Γ) = Γϕ, where ϕ ≡ argminbE (G (xi)− Γib)
2, and define i ’s “dominance genetic factor” as

di ≡ Γiϕ − xiβ. The proportion of phenotypic variance explained by this dominance genetic factor is
known as the dominance variance. Epistasis and epistatic variance can similarly be formalized.
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most of the variance in the phenotype. Empirical evidence has borne out the
prediction that dominance deviations explain only a small fraction of phenotypic
variance for many phenotypes, in some cases a negligible fraction (Pazokitoroudi
et al., 2021; Hivert et al., 2021; Okbay et al., 2022). Similar statistical arguments
have been invoked to argue that epistatic deviations are also unlikely to explain
much variance for polygenic phenotypes in humans. Empirical evidence to date
also supports this prediction (Hivert et al., 2021), albeit with wider confidence
intervals.
The additive model is attractive for applications because it provides a rea-

sonably good approximation to the general framework, in the sense that h2 is
typically close to H2, and it is far more tractable: there is a single parameter of
interest for each genetic variant, βj , referred to as the additive effect of genetic
variant j, or when the meaning is unambiguous, the genetic effect.

D Heritability, the Environment, and “Genetic Endowments”

Here, we use the framework in the previous section to highlight five common
misconceptions about genetics research.
First, the error term ϵi (x) is often referred to as the “environment.” However,

ϵi (x) can also capture variance due to factors uncorrelated with x, including non-
additive genetic effects and gene-environment interactions (for further discussion,
see Benjamin et al., 2012). Relatedly, 100% minus the heritability is frequently
misinterpreted as the fraction of variance explained by the environment. To cor-
rectly understand the role of the environment in Equations (1) and (3), following
Jencks (1980) we distinguish between environmental variables that are causally in-
fluenced by the genotype vector, which we call endogenous, and those that are not,
which we call exogenous. For example, if parental investment is partly a response
to a child’s genotype, then that component of parental investment is an endoge-
nous environmental variable. The error term ϵi (x) includes non-environmental
factors such as those mentioned above, but also all aspects of the environment that
vary independently of x. Place of birth and age are two examples of environmen-
tal variables that can usually be treated as exogenous. By contrast, endogenous
environmental factors are by definition part of the causal effect of genotype, as
we discuss in more detail below (the fourth misinterpretation).6 Since heritability
includes the variance explained by endogenous environmental factors, the fraction
of variance explained by all environmental factors—the sum of endogenous and
exogenous environmental factors—could be larger or smaller than 100% minus

6Rather than distinguishing between exogenous and endogenous environmental factors, following
(Plomin, DeFries and Loehlin, 1977) the behavior genetics literature instead typically categorizes gene-
environment correlation into three types: evocative (the genotype evokes a reaction from others that
affects the phenotype), active (an individual’s genotype causes them to select into particular environ-
ments), and passive (an individual’s genotype is correlated with the environment in which they are raised,
e.g., due to parental genetic effects). In our terminology, both active and evocative gene-environment cor-
relation are causal effects of genotype that operate through endogenous environmental factors, whereas
passive gene-environment correlation is correlation between genotype and exogenous environmental fac-
tors.
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the heritability (Jencks, 1980). In many situations, it may be more accurate to
label ϵi (x) as the error term.
Second, the concept of heritability is sometimes misunderstood to be a measure

of “how genetic” a phenotype is, as if it were a fixed parameter. In fact, it is
a descriptive statistic about the population under study, much like an R2. A
nice empirical illustration is Branigan, McCallum and Freese (2013), who find
substantial variation in the heritability of educational attainment by nationality,
sex, and birth cohort.
Third, heritability is often erroneously interpreted as an index of policy rele-

vance, with higher heritability leaving less room for environmental interventions
to have an effect. But as noted by Goldberger (1979, p. 344): “The policy-
relevant effect of an explanatory variable is properly measured by its regression
slope, not by its contribution to R2...” His memorable example is that eyeglasses
can make a big difference even though naked eyesight is highly heritable. The
facts that nutrition has led to large improvements in average height and that
variation in height at any point in time is largely explained by genetic factors are
not contradictory (Visscher, Hill and Wray, 2008). Moreover, policy can itself
change heritability. For example, if income were redistributed from those with a
high genetic factor for income to those with a low genetic factor, then the her-
itability of post-transfer income would be reduced. Rimfeld et al. (2018) find
that after Estonia gained independence from the Soviet Union, the heritability
of educational attainment and occupational status increased, and they interpret
this change as resulting from an increase in meritocracy.
Fourth, as highlighted by Jencks (1980), people often assume that genetic ef-

fects operate through purely biological mechanisms that are immutable. Many
examples of genetic effects taught in school, such as single genes determining
whether a pea is smooth or wrinkled, fit this conception. However, genetic ef-
fects may—and for behavioral and other complex phenotypes, likely do—operate
through environmental mechanisms. Consider the role of genetic factors in educa-
tional attainment. One hundred years ago, there would have been a large negative
effect of having two X chromosomes on educational achievement. The subsequent
dismantling of many formal and informal barriers facing women in the education
system has reduced male-female gaps in educational outcomes, sometimes revers-
ing them entirely. The misconception that environmental mechanisms are distinct
from genetic effects is often expressed, even by leading genetics researchers. For
example, the abstract of a high-profile paper on the genetics of obesity states: “Al-
though often attributed to unhealthy lifestyle choices or environmental factors,
obesity is known to be heritable” (Khera et al., 2019). The statement implicitly
assumes that genes do not impact BMI through pathways that are “environmen-
tal,” but that assumption is implausible. For example, genes could impact BMI
in part through their effects on diet, exercise and other modifiable lifestyle choices
which are associated with genes.
Fifth, especially in economic applications, the genetic factor (or additive ge-
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netic factor) for educational attainment or cognitive performance is sometimes
referred to as an individual’s “genetic endowment.” We view this terminology as
problematic because it ignores important conceptual distinctions. In economic
models, a genetic endowment refers to an individual’s human capital stock at
an initial time period. The genetic factor captures all mechanisms by which an
individual’s genotype ends up affecting the phenotype, including not only the ini-
tial human capital stock, but also investments by the individual and by parents,
teachers, and others that are caused by the individual’s genotype (see Sanz-de
Galdeano and Terskaya, Forthcoming Web Appendix E for a simple model). It
can also capture preferences, physical appearance, other non-human-capital vari-
ables, and non-investment reactions by others that are influenced by genotype and
affect the phenotype. For example, if admissions committees for schools discrimi-
nate against applicants with certain physical characteristics, genetic influences on
those characteristics may be part of the genetic factor for educational attainment.
To avoid misunderstandings, we recommend researchers define key concepts

clearly, avoid inaccurate terminology whenever possible, and take reasonable pre-
cautions to preempt common sources of misunderstanding about what can and
cannot be concluded from a study’s analyses.

E Gene Expression and Epigenetics in the Framework of Genetic Effects

The misconception that genetic effects are necessarily biological and immutable
is, in some sense, the opposite of another source of conceptual confusion that
sometimes arises: how to reconcile the idea of genetic effects with the fact that
gene expression is dynamic and modifiable (see Section I.G). The definition of
genetic effects in terms of potential outcomes does not depend on how often or
in what situations a relevant gene is expressed biologically; it only requires that
we specify a measurable outcome that we would compare in the hypothetical
experiment of modifying a person’s genotype at conception. Some genetic variants
have effects because they code for a different protein when the relevant gene is
expressed, others have effects because they influence gene expression.
Where variation in gene expression and epigenetics enters into the theoretical

framework for genetic effects depends on its source. Anything that would be
different if the person were conceived with a different genotype is part of the
genetic factor in Equation (1); in that case, gene expression is a mechanism
through which the genetic effect operates. Genotype could directly affect gene
expression, affect epigenetic modifications that change gene expression, or lead to
endogeneous environmental responses that in turn affect gene expression. On the
other hand, if exogenous environmental factors affect gene expression (or cause
epigenetic modifications that affect gene expression), these effects are part of
the error term in Equation (1). Finally, if genetically influenced gene expression
interacts with exogenous environmental factors, the genetic effects are averages
over these interactions, and the deviations for an individual from the population
average are in the error term.
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F Parental, Sibling, and Other Interpersonal Genetic Effects

When we use the term “genetic effect,” we mean what we have been discussing
so far: the effect of an individual’s genotype on that same individual’s phenotype.
However, we sometimes instead call it a self genetic effect to distinguish it from
an interpersonal genetic effect : the effect of an individual’s genotype on someone
else’s phenotype. For example, a parent’s genotype may influence their child’s
educational attainment, for example by affecting the parent’s nurturing behavior
or income. In the literature, what we call self genetic effects are sometimes called
“direct genetic” effects, and what we call interpersonal genetic effects are variously
called “indirect genetic,” “associative,” or “genetic nurture” effects. For a review
of the genetics literature, almost entirely focused on non-human examples, see
chapter 22 in Walsh and Lynch (2018).
Interpersonal genetic effects are relevant to social science because they operate

via the exogenous environment of the individual. Interpersonal genetic effects
sidestep the reflection problem (Manski, 1993) that bedevils other approaches
to studying interpersonal influences. Thus, understanding the magnitudes and
mechanisms of interpersonal genetic effects offers the promise of becoming a
broadly useful approach to learning about how individuals are affected by the
behaviors and environments generated by people around them.
The two main types of interpersonal genetic effects that we discuss are parental

genetic effects and sibling genetic effects, which refer to the effects of the genotype
of an individual’s parent or sibling, respectively, on the individual’s phenotype.
Other interpersonal genetic effects include grandparental genetic effects and friend
genetic effects (e.g., Sotoudeh, Harris and Conley, 2019).
Sibling genetic effects can be defined analogously to self genetic effects: a sibling

genetic effect refers to the effect on an individual’s phenotype from the hypothet-
ical experiment of changing their sibling’s genotype at conception. However, two
subtleties arise. First, the relevant population for which sibling genetic effects are
well-defined is the population of individuals who have siblings, which is a subset of
the population for which self genetic effects are well-defined. Second, more than
one causal parameter of interest may exist. For example, in families with three or
more children, one parameter corresponds to the experiment of changing a ran-
dom sibling’s genotype holding other siblings’ genotypes constant, while another
parameter corresponds to the experiment of changing all siblings’ genotypes.
Parental genetic effects are more complicated to define. When a parent’s geno-

type is changed at conception, this change will affect the offspring through two
pathways. First, it could change the allele that is transmitted to the offspring,
which would then have a self genetic effect on the offspring. Second, it will have
a self genetic effect on the parent, and then the parent’s phenotypes (e.g., their
income and behaviors) affect the phenotype of the offspring. The parental ge-
netic effect is defined as the component of the overall causal effect that operates
through this second pathway (for formal treatments, see Shen and Feldman 2020
and Young, 2023). Note that, since the parent’s altered genotype could be trans-
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mitted to other offspring, the parental genetic effect will include part of the sibling
genetic effects acting on the focal offspring (Young et al., 2022).

G Twin, Family, and Adoption Studies

Prior to the availability of genetic data, most empirical human genetics research
focused on estimating heritabilities using twin, family, or adoption studies. Even
today, the majority of research on the genetics of behavioral phenotypes includes
such studies (Becker et al., 2021). This work, launched in economics by Taubman
(1976), has been previously reviewed for an economics audience (e.g., Beauchamp
et al., 2011a; Benjamin et al., 2012; Sacerdote, 2011). Here, we touch on this
research only briefly, for two purposes: to relate it to our framework and to
provide a benchmark for genomic-data-based analyses discussed later.
The basic idea of a twin, family, or adoption study is to infer heritability and

other variance components from the phenotypic resemblances of pairs of relatives
who differ in their environmental similarity and genetic relatedness. The expected
phenotypic resemblance of each such kinship (e.g., mono- or dizygotic twins, half
siblings, etc.) is derived given some causal theory of how genetic and non-genetic
factors determine a phenotype. Given sufficiently strong assumptions, for example
about how genes and environmental factors are transmitted intergenerationally,
the degree of assortative mating, the degree of gene-environment correlation, the
processes through which adoptees are assigned to their rearing families, or the ex-
tent to which twins face special environments, the theory can be used to predict
how each kinship correlation depends on a few structural parameters. Each kin-
ship thus provides a moment condition, and the set of moment conditions jointly
identifies the parameters of the model.
Before the modern molecular genetic era, a range of models seemed capable

of “explaining” the available kinship correlations, despite major differences in
their underlying assumptions about, for example, dominance, assortative mating,
and gene-environment correlation (Loehlin, 1978). Despite some spirited debates,
efforts to distinguish between these models were largely unsuccessful. The modern
GWAS era has enabled researchers to make substantial progress on the important
question of which of these explanations is the least wrong. For outcomes such as
educational attainment, we now have compelling evidence that gene-environment
correlations (Young et al., 2018) and assortative mating are strong (Robinson
et al., 2017; Lee et al., 2018), whereas dominance variance is not a major source
of phenotypic variance (Okbay et al., 2022). This new evidence rules out models
that could not be ruled out by the available kinship data. The more general
lesson is that Goldberger (1978, p. 72) was right to caution that misspecified
models will generally deliver biased estimates but “not necessarily bad fits”—and
that dismissing concerns about model misspecification based on the result of some
goodness-of-fit test is often a mistake.
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H Estimating Heritability Using Genetic Data

Whereas twin, family, and adoption studies estimate heritability by examining
the relationship between phenotypic resemblance and expected genetic related-
ness, an alternative approach estimates heritability by examining the relationship
between phenotypic resemblance and the realized relatedness between pairs of rel-
atives—relying on genetic data to directly measure realized relatedness. Genetic
relatedness can be measured by inferring the segments of DNA inherited from
common ancestors, called identity-by-descent (IBD) segments.
For siblings, segments are deemed IBD if they are inherited from the same

parental haplotype. An alternative approach uses the variation in genetic related-
ness between siblings (Visscher et al., 2006), which is due to random segregations
of genetic material during meiosis and so should be independent of almost all
environmental effects (sibling genetic effects being one exception). However, this
approach requires at least several tens of thousands of genotyped siblings to ob-
tain reasonably precise estimates of heritability. Moreover, it cannot separately
the identify additive and non-additive components of heritability (Young and
Durbin, 2014). Relatedness Disequilibrium Regression (RDR) is a generalization
of the sibling approach to all relative pairs, which can increase power and reduce
the influence of sibling genetic effects and non-additive genetic effects. However,
RDR can only be applied settings where parental genotypes are available and
may miss some heritability due to very rare variants (Young et al., 2018).

I (Un)measured Variants, the Additive SNP Factor, and SNP Heritability

One challenge for researchers is that only a subset of genetic variants is mea-
sured. As mentioned in Section I.F, genetic data (after imputation and quality
control) often include ∼10 million SNPs, which capture much of the common ge-
netic variation in European-genetic-ancestry populations. However, most datasets
do not contain information about most rare SNPs nor non-SNP genetic variants
that could have causal effects on the phenotype. It is therefore useful to define
concepts analogous to the additive genetic factor and narrow-sense heritability
that account for the omission of genetic variants. We define the additive SNP
factor as the fitted population regression function from regressing G (x) onto the
vector of measured SNP genotypes x̃:

(4) g̃ (x) = x̃β̃,

where β̃ ≡ argminbE (G (x)− x̃b)2 and the expectation is taken over the distri-
bution of xi in the population. The additive SNP model is

(5) yi = x̃iβ̃ + ϵ̃i,

where Cov(x̃i, ϵ̃i) ̸= 0 is possible, for example, due to parental genetic effects
or other sources of gene-environment correlation. We cannot write Equation
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(5) in terms of the potential outcomes y (x) because it does not have a causal

interpretation. Instead, the vector β̃ should be interpreted as the best linear
approximation (in the sense of projection) to the average causal effects of the
genotype vector, given the genotypes of the measured SNPs and the distribution
of xi in the population. The measured SNPs proxy for, or “tag,” the causal
effects of unmeasured genetic variants that they are correlated with. Therefore,
in populations with different LD matrices, the vectors β̃ will differ, even if the
genetic-effect vectors β are the same.
The vector of coefficients β̃ is related to the vector of genetic effects β by the

formula for omitted-variables bias: β̃ = βx̃ + (Var (x̃i))
−1Cov (x̃i,x \ x̃i)βx\x̃,

where x \ x̃i is the vector of unmeasured genetic variants, βx̃ is the subvector of
β corresponding to measured SNPs, and βx\x̃ is the subvector of β corresponding
to unmeasured genetic variants.
SNP heritability, denoted h̃2, is defined as the fraction of variance in the popu-

lation explained by the additive SNP factor, given the population distribution of
xi:

h̃2 ≡ Var (g̃ (xi))

Var(yi)
,

where the variances are taken with respect to the population distribution of xi.
By construction, SNP heritability is weakly smaller than narrow-sense heritabil-
ity, and strictly smaller if there are unmeasured genetic variants that affect the
additive SNP factor that are not perfectly correlated with linear combinations of
measured SNPs.
SNP heritability depends on the set of genetic variants included in the analysis

(and hence on the genotyping technology, imputation method, and quality-control
filters), and it is therefore less interpretable than narrow-sense heritability. How-
ever, the additive SNP factor and SNP heritability are central to understanding
polygenic indexes (Section IV).
Several estimators for SNP heritability have been proposed. For some of them,

the core idea is similar to the approaches described in Section II.H in that they
compare phenotypic resemblence to genetic resemblance. However, this class of
estimators uses samples of approximately unrelated individuals who share no (or
very few) identifiable IBD segments. Therefore, genetic resemblance between a
pair of individuals is measured as the correlation of their measured SNP geno-
types. This type of similarity is referred to as identity-by-state (IBS). The rela-
tionship between phenotypic and IBS genetic resemblance can be estimated using
least-squares approaches (generally referred to as Haseman-Elston regression, in
reference to closely related work in Haseman and Elston (1972)) or maximum-
likelihood approaches (e.g., Genomic-relatedness-matrix REstricted Maximum
Likelihood, or GREML (Yang et al., 2010)).
Heritability estimates based on IBS are expected to be smaller than those based

on IBD since shared IBD segments have identical (unmeasured) rare and non-SNP
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variants, whereas IBS-based estimators only pick up the effects of such variants to
the degree that they are correlated with observed SNPs. In order to capture the
effects of rare and non-SNP variants, GREML has been extended to whole-genome
data, where it is used to estimate a quantity closer to narrow-sense heritability
(Wainschtein et al., 2022).
Regardless of the set of SNPs used, these methods are biased to the extent

that genotypic resemblance is correlated with environmental similarity (Young
et al., 2018) and biased by assortative mating (Young, 2022). These biases and
strategies used to mitigate them are discussed in greater detail in Section III.A.

J Genetic Overlap and Genetic Correlation

Genetic overlap refers to the extent of shared genetic influences on two pheno-
types.7 Conceptually, genetic overlap addresses the question of to what degree
genetic factors drive the similarity between a pair of phenotypes. When the two
phenotypes are the same phenotype in two different populations, genetic over-
lap reflects hetereogeneity in the additive genetic effects, which could be due to
gene-environment interaction or non-additive genetic effects.
Genetic correlation is a measure of genetic overlap. Somewhat confusingly, the

term “genetic correlation” is used to refer to two different measures of genetic
overlap that are rarely acknowledged as different from each other (our discussion
here is based on Okbay et al., 2016, Supplementary Information section 3; see also
Border et al., 2022a). Which of the two parameters is more appropriate depends
on the specific setting and research question.
One measure is the correlation (across individuals in a population) of the ad-

ditive genetic factor across the two phenotypes, A and B:

(6) rxβ =
E [(xiβA) (xiβB)]√

E [(xiβA) (xiβA)]E [(xiβB) (xiβB)]
=

β
′
AΣβB√

β
′
AΣβAβ

′
BΣβB

,

where Σ ≡ Var (xi) = E [xix
′
i] is the LD matrix. This measure is the most rel-

evant for assessing how well a polygenic index (discussed in Section IV below)
constructed to predict phenotype A will predict phenotype B. Twin and family
studies can be used to estimate rxβ, but the methods require very strong assump-
tions (for discussion, see Beauchamp et al., 2011b). GREML and related methods
for estimating SNP heritability can be adapted to estimate a variant of rxβ: the
correlation of the additive SNP factor across A and B (e.g. Deary et al., 2012).
Intuitively, the idea is to estimate, across pairs of individuals, the relationship be-

7Genetic overlap is related to the concept of pleiotropy. Although the precise definition depends
on context, a genetic variant is said to be pleiotropic, loosely speaking, when it affects more than one
phenotype. Genetic overlap corresponds to the extent of pleiotropy genome-wide. Sometimes pleiotropy
refers more specifically to when a genetic variant affects the phenotypes through distinct biological
mechanisms, or to when the phenotypes are in some sense unrelated to each other.
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tween the within-pair covariance of A and B and the pair’s genotypic resemblance
on measured SNPs.
The other measure is the correlation (across genetic variants) of the causal

effects of the variants on A with the causal effects of the variants on B:

(7) rβ =
β

′
AβB√

β
′
AβAβ

′
BβB

.

This measure corresponds to a hypothetical experiment where a single, randomly
chosen genotype is changed at conception and the effect of that change on two
different phenotypes is compared. As such, this measure of genetic correlation is
most relevant to the concept of pleiotropy because it measures whether the actual
self genetic effects are correlated rather than the additive genetic factors; these
may differ if, for example, the causal genetic variants for A and B differ but are
in LD with each other. The genetic correlation in Equation (7) is what LD Score
regression aims to estimate (Bulik-Sullivan et al., 2015b).
Genetic correlations can differ from phenotypic correlations in interesting ways.

For example, in the context of risk preferences, Karlsson Linnér et al. (2019)
find that the genetic correlations between a survey-based measure of general risk
tolerance and a variety of risky behaviors remain higher than the corresponding
phenotypic correlations even after adjustment of the phenotypic correlations for
measurement error (their Supplementary Tables 8 and 9). Karlsson Linnér et al.
interpret this finding as supporting the view that a general factor of risk tolerance
partly accounts for cross-domain correlation in risky behavior (Einav et al., 2016;
Frey et al., 2017) and implying this factor is genetically influenced. The relatively
low phenotypic correlations, which have been interpreted as evidence against a
general factor (Weber, Blais and Betz, 2002; Hanoch, Johnson and Wilke, 2006),
appear to be driven by (non-measurement-error) domain-specific contributors to
the additive SNP model’s error term.

III Estimation of Genetic Effects

An estimate of the genetic-effect vector, β, is the key input for most downstream
analyses, including constructing polygenic indexes. In this section, we discuss the
theoretical issues and practical challenges that arise in estimation.

A The Challenge of Causal Inference

The additive model in Equation (3) cannot be estimated because only one
potential outcome is observed for each individual. With a slight abuse of notation,
we can rewrite the analog of Equation (3) in terms of observables:

(8) yi = xiβ + ϵi.
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Whereas in Equation (3) we were holding fixed the genotype vector x for everyone
in the population, in Equation (8), the value of xi corresponds to individual i’s
actual genotype vector, and the residual ϵi = ϵ (xi) is the deviation of individual
i’s phenotype value from the prediction of the additive model, g (xi) = xiβ. In
Equation (8), the ordinary least squares estimator of β will be biased in the
presence of correlation between genotype and the residual: Cov (xi, ϵi) ̸= 0.8

In practice, the main source of bias is gene-environment correlation. There are
two leading sources of gene-environment correlation:

� Population Stratification: Individuals with shared genetic ancestry have
more similar genotypes, but these individuals also share similar environ-
mental exposures. A classic, memorable example is a hypothetical study of
genetic causes of the use of chopsticks in a population of individuals living
in San Francisco (Lander and Schork, 1994; Hamer and Sirota, 2000). For
many genetic variants, individuals with Asian genetic ancestries have dif-
ferent allele frequencies than individuals with European genetic ancestries
(largely because of genetic drift that occurred after the populations became
relatively separate). For cultural reasons, these individuals are also more
likely to use chopsticks.

� Parental Genetic Effects: Individuals with phenotype-increasing alleles have
parents with these alleles. Parents with a high phenotype value may create a
rearing environment that increases (or perhaps, in some cases, decreases) the
child’s phenotype value. For example, individuals with alleles that increase
educational attainment are likely to have more highly educated parents.
Such parents may read more to their children, or they may earn higher
incomes that enable them to live in better neighborhoods and send their
children to better schools.

The shared genetic ancestry relevant to population stratification may be in the
distant past, as with continental ancestries, but shared genetic ancestry going
back only a handful of generations could be associated with environmental in-
fluences (e.g., Zaidi and Mathieson, 2020). Other interpersonal genetic effects
(besides parental) could also generate gene-environment correlation. For exam-
ple, sibling genetic effects can generate negative gene-environment correlation if
parents differentially invest in their children to offset genetic differences.
Because random assignment of genotype is infeasible in studies of humans,

researchers instead address the causal inference problem by including a vector
of control variables zi. While additional complications discussed in Section III.E
will necessitate altering the specification, to clarify the conceptual issues we begin
by writing the regression that researchers would want to estimate if they could:

8In this subsection we ignore assortative mating, because we are considering regression equations that
include the full vector of genotypes xi for all genetic variants in the genome. As we discuss in Section
III.E, assortative mating exacerbates the omitted-variables bias that arises in GWAS due to running
a regression on a single SNP at a time. This omitted-variables bias is absent when the full vector of
genotypes xi is included in the regression.

24



(9) y = xβ + zγ + ϵ,

where we drop the i subscripts to make the notation more compact. If the geno-
type vector x is as good as random conditional on z, then this strategy fully
addresses the challenge of causal inference. Otherwise, the inclusion of controls
will not fully rule out confounding factors. In Sections III.B and III.C we describe
how, given appropriate family data, it is possible to construct z such that x is as
good as random conditional on z. However, most research to date has relied on
imperfect controls that we discuss in Section III.D.

B The Natural Experiment of Mendelian Segregation

At each locus in an offspring’s genome, one of each parent’s two alleles is
transmitted in a random process called Mendelian segregation (see Section I.B).
Mendelian segregation generates a natural experiment that can be exploited to
draw causal inferences. To see how, denote the genotype vectors of an individual’s
parents by xf (father) and xm (mother). Then we have

E [x | xf ,xm] = (xf + xm) /2︸ ︷︷ ︸
xp

.

Under Mendelian inheritance, the expected genotype at SNP j is simply the av-
erage of the parental genotypes, which we denote xp. Next, define the deviation
from the parental midpoint as xr ≡ x − xp. Then we can decompose the geno-
type vector into two terms, one representing the parental midpoint, xp, and one
representing the deviation from this midpoint, xr:

x = xp + xr.

where xr is a random deviation from xp, E [xr|xp] = 0 and E [ϵ|xr] = 0, where ϵ
is the error in the additive model (3).9 Therefore, if Regression (9) is run with xp

included among the controls, the residual variation in x will isolate the random
component xr, and the β estimator will have a causal interpretation.
A subtlety that has not been appreciated, to the best of our knowledge, is that

controlling for the parental genotypes is equivalent to a two-stage least squares
regression of y on x using xr as an instrument for x. Therefore, as Veller, Prze-
worski and Coop (2023) showed, the estimate will be a local average treatment
effect (LATE, see Imbens and Angrist, 1996), i.e., a weighted average of treatment
effects across individuals, with the individuals who contribute more identifying

9A subtlety here is that xr is only mean independent of xp and ϵ. That is because at any genetic
variant j, only heterozygous parents contribute to variation in the offspring genotype. Therefore, the
variance-covariance matrix of xr and the variance of the non-additive genetic factor, which is part of ϵ,
both depend on the parental genotype vector xp.
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variation getting a larger weight.
For each genetic variant j, only individuals whose parents are heterozygous at

j contribute identifying variation in genotype. In general, the LATE could differ
from the average treatment effect in the population as a whole if the genetic
effects differ across subpopulations with different frequencies of heterozygosity.
Note that across genetic variants j, the estimated βj ’s will be different weighted
averages across individuals, depending on which individuals have heterozygous
parents at j. See Appendix I for a more formal treatment.
In a randomly mating population without genetic drift, the amount of iden-

tifying variation in genotype xr (which is sometimes denoted the “segregation
variance”), Var (xr), is half the total population variance in x. This can be seen
by first noting:

Var (xr) = Var (x)−Var (xp) .

Calculating the variance of the mean parental genotype therefore yields

Var (xp) = Var

(
xf + xm

2

)
=

1

4
[Var (xf ) + Var (xm) + 2Cov (xf ,xm)]

=
1

2
Var (x) ,

where Cov (xf ,xm) = 0 and Var (xf ) = Var (xm) = Var (x) follow from our
assumptions about random mating and zero genetic drift. If parents assortatively
mate such that Cov (xf ,xm) > 0, then Var (xp) >

1
2Var (x), and the amount of

identifying variation is less than half the total population variance.
Rather than controlling for the mean parental genotype, including the father’s

and mother’s genotypes separately as controls in Regression (9) would also iden-
tify the self genetic effect, because span (xp) ⊂ span (xf ,xm).10 In some cases,
estimating the coefficients separately may be of substantive interest, for example,
in settings where the investigator has a hypotheses about their relative magni-
tudes. We highlight that neither the coefficients on the parental midpoint, xp,
nor the coefficients on mother’s and fathers’ genotypes when estimated separately,
should be interpreted causally (Shen and Feldman, 2020; Young, 2023).
Several caveats to the the natural experiment of Mendelian segregation should

be noted. Depending on the age and recruitment mechanism of the study sample,
differential survival by genotype may distort Mendelian segregation proportions
and induce collider bias with other factors that affect survival. For example,
gametes with genotypes that preclude conception will not become embryos, and
embryos with lethal genotypes will not survive to birth, but such genotypes are
rare (because natural selection acts against them). The same applies to genotypes
that cause significant childhood mortality. However, some common variants af-

10In terms of precision, the choice of parental controls is unlikely to meaningfully matter. Theoretically,
there are two opposing effects. On the one hand, controlling for xf and xm uses an additional degree
of freedom. On the other, including both vectors can improve precision if one parental genotype vector
absorbs more of the variation in ϵ. In practice, both effects are likely to be very small.
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fect mortality later in life, and their segregation proportions could be distorted if
study participants are recruited later in life. Moreover, segregation proportions
will also be distorted for genotypes that affect recruitment into a study. The
resulting difficulties are analogous to those that arise in the evaluation of a ran-
domized controlled trial with endogenous attrition. These concerns do not apply
if parents are recruited—whether randomly or not—and the analyses are done on
the resulting offspring.

C Identification in Sibling Samples

Although samples with genotyped close relatives are becoming more common,
such samples are still relatively scarce. The mean parental genotypes are only
directly observed for genotyped parent-child trios, which are rare in the datasets
currently available. Among genotyped family samples, sibling samples are the
most common.
In genetic analyses with siblings, researchers have generally addressed the chal-

lenge of causal inference by using sibling fixed effects. An underappreciated point,
highlighted by Young et al. (2022), is that the regression with sibling fixed effects
is a biased estimator of the self genetic effect, βj , if an individual’s genotype also
affects their sibling. The potential for bias arises because, instead of analyzing
xr, a sibling comparison analyzes the deviation of each sibling’s genotype vector
from the mean sibling genotype. The identifying variation for the first sibling in
a pair is thus given by:

x−
(
x+ xsib

2

)
=

1

2
(x− xsib) ,

where xsib is the genotype vector of the focal individual’s sibling. Since full
siblings share a parental midpoint, variation in 1

2 (x− xsib) = 1
2 (xr − xr,sib) is

random, with E [(x− xsib) /2|xp] = 0 and E [ϵ| (x− xsib) /2] = 0. However, when
Regression (9) is run with the z being sibling fixed effects, the expectation of the
within-sibling estimator is β − βsib, where βsib denotes the sibling genetic effect.
Intuitively, the identifying variation in a sibling analysis is the focal individual’s
genotype vector relative to that of his/her sibling’s; thus, the estimated coefficient
is picking up both the effect of the individual having a higher genotype value and
the effect of the sibling having a lower genotype value.
Young et al. (2022) proposed an alternative approach to analyzing sibling data,

which enables separate identification of the self genetic effect: from the individ-
ual’s and her sibling’s genotype, impute the mean parental genotype (or, equiv-
alently, the sum of the parental genotypes) using the laws of genetic inheritance
(recombination and Mendelian segregation; see Section I.B), and then control for
the mean parental genotype. Intuitively, this imputation enables identification be-
cause it adds information to the multiple regression, since the process of genetic
inheritance is non-linear. The idea behind the imputation method is illustrated
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Figure 1. : Mendelian Imputation of Parental Genotypes (Young et al., 2022).
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Note: A, B, C, and D refer to arbitrary alleles and are colored white if not transmitted to either child.

in Figure 1. The first imputation case is when all four alleles are observed in the
children. In this scenario, all four parental alleles can be recovered, and the mean
parental genotype is known with certainty. In the remaining cases, only two or
three of the parental alleles are observed in the children. In these situations, the
expected mean parental genotype is imputed using sample allele frequencies in
place of unobserved alleles. The imputation adds information when at least three
of the four parental alleles are observed. Young et al. (2022) show that running
Regression (9) where z includes the imputed mean parental genotype produces
consistent and unbiased estimates of the self genetic effect (provided that the
imputation itself is unbiased).
Even when there are no sibling genetic effects, controlling for the imputed

parental genotypes is preferable to the sibling fixed-effects analysis because the
former produces more precise estimates (Young et al., 2022).11 The one subtlety
is that sibling random effects must be included in Regression (9) to control for
the unobserved differences across families that would be controlled for by sibling
fixed effects. Young et al. (2022) also show how to obtain consistent and unbiased
estimates of the self genetic effect via imputation of parental genotypes in samples
with genotyped child-parent pairs, with or without any number of genotyped
siblings.

11The fundamental reason is that the sibling fixed-effects analysis exploits less of the random iden-
tifying variation. In the imputed parent approach, the model is identified off of deviations from the
mean of the observed parental genotypes. In a sibling fixed-effect approach, the model is identified off
of deviations from the mean sibling genotype. These two approaches are identical when siblings inherit
either perfectly overlapping or non-overlapping alleles from their parents (the outer cases in Figure 1).
However, in the case when siblings inherit a common allele from one parent but distinct alleles from the
other parent (the middle case in Figure 1), the common allele is double counted in the sibling mean,
shading it toward the observed sibling genotypes and reducing the variance of the identifying variation.
Formal details are in Young et al. (2022).
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D Imperfect Controls and Genetic Principal Components

Since researchers have historically not had access to large genotyped family
samples, the standard strategy for addressing concerns about one major source
of gene-environment correlation, population stratification (see Section III.A), in-
volved (i) restricting to samples of relatively homogeneous genetic ancestry, typ-
ically European-genetic-ancestry (see Section III.H), and (ii) relying on imper-
fect controls z: typically the first several principal components of the genotype
data—hereafter, genetic PCs—which we discuss below, and a small set of non-
genetic controls, typically a polynomial in birth year (or age), sex, and their
interactions. One major reason why the set of non-genetic controls is small is
that genetic analyses have been meta-analyses that combined summary statistics
from multiple datasets, many of them small, medical datasets with few covari-
ates available. Birth year and sex are among the few covariates that are widely
available and measured consistently across samples.
Often, the first several genetic PCs capture the orthogonal axes that explain the

most genetic variance among the individuals in a particular sample (Menozzi, Pi-
azza and Cavalli-Sforza, 1978). One early paper using PCs from SNP array data
found that, when estimated in a sample of individuals throughout Europe living
in the same place as their grandparents, to a remarkably high degree of accuracy
the first PC captured a north-south axis of European geography and the second
PC captured a west-east axis (Novembre et al., 2008). Other early papers found
that, when estimated within a relatively genetically homogeneous sample such
as individuals in Iceland, the genetic PCs similarly had natural interpretations
corresponding to geographical axes (e.g. Price et al., 2009). Theoretical anal-
yses showed that, in simple models where a population separates into distinct
populations and then genetic drift causes the allele frequencies of the popula-
tions to diverge (see Section I.E), genetic PCs can identify which population an
individual is from (Patterson, Price and Reich, 2006). These early findings, com-
bined with the key advantage that genetic PCs can be calculated in any sample
with SNP array data, quickly led to the adoption of the first few genetic PCs
as standard control variables (Price et al., 2006). For a time, a common view
among researchers was that controlling for genetic PCs was adequate to address
population stratification.
In recent years, appreciation of the limitations of controlling for genetic PCs has

been growing. We highlight three that we think are the most important. First,
the first few PCs capture only gross features of genetic population structure (such
as north-south and west-east location of genetic ancestry within Europe), but
population-stratification bias could result from more subtle genetic population
structure. For example, within Germany, Lutherans and Catholics may prefer-
entially marry others of the same religion and have different cultural practices,
but these two groups would not be differentiated by the first few genetic PCs.
Researchers sometimes attempt to address this limitation by controlling for an
even larger number of PCs (e.g., 100), but we are skeptical that this strategy will
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be effective, in part due to the limitation we discuss next.
Second, large samples are needed to estimate more than a few PCs accurately

(Patterson, Price and Reich, 2006; Bloemendal, 2019). Controlling for PCs that
are estimated with substantial measurement error does not effectively control for
those PCs. In practice, researchers often address this concern by estimating PC
weights in some large, external dataset and then applying those weights in their
own sample, but to effectively control for population structure, this approach
requires that the sample in the external dataset and the analysis sample are
sufficiently similar in genetic ancestry.
Third, genetic PCs computed in the standard way do not capture recent popu-

lation structure (i.e., occurring within the last few generations; Zaidi and Math-
ieson, 2020; Abdellaoui et al., 2022a). Controlling for PCs thus does not correct
for population stratification at the level of extended families, and controlling
for genetic PCs does not address confounding of self-genetic effects from parental
genetic effects. Therefore, even in a large sample in which many PCs can be accu-
rately estimated and controlled for, potentially important sources of confounding
remain.
The limitations of controlling for genetic PCs were made salient by several re-

cent papers, which found substantial bias in analyses even after controlling for
PCs (e.g., Sohail et al., 2019; Berg et al., 2019; Lee et al., 2018). The findings of
these papers are one impetus for the growing interest in family-based genetic stud-
ies that control for parental genotypes, which, as discussed in Section III.B above,
exploits a natural experiment that enables clean identification of self-genetic ef-
fects.
When imperfect controls (such as genetic PCs) are used, genetic studies do

not have a clean causal interpretation and should instead be interpreted through
a predictive framework. We define the optimal genetic predictor given a set of
controls, z, as the fitted population regression function from regressing y onto the
vector of measured SNP genotypes, ğ ≡ x̃β̆, where,{

β̆, γ̆
}
≡ argmin

b,a

{
E
[
(y − x̃b− za)2

]}
.

In what follows, we refer to ğ as the optimal predictor and β̆ as the optimal
predictor weights, without reference to the controls. Similarly, and parallel to

the notion of SNP heritability from the causal model, we define h̆2 ≡ Var (ğ) as
the optimal predictive power for y since it is the linear combination of observed
SNPs with maximal predictive power for y given the set of controls. When the
controls z are sufficient to control for potential biases (e.g., if z is the vector of
mean parental genotypes), then the optimal predictor coincides with the additive
SNP factor and the optimal predictive power coincides with the SNP heritability.
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E Genome-Wide Association Studies (GWAS)

As discussed in Section III.A above, researchers would like to estimate the
multivariate regression in Equation (9), restated here for convenience:

y = xβ + zγ + ϵ,

where x is a vector of all genetic variants in the genome and z is a vector of
controls. Three complications arise when trying to make inferences about the
parameters in this equation.
First, as mentioned in Sections I and I.F, only a subset of the genetic variants

is measured.
Second, even among the SNPs that are measured, many are in high, sometimes

perfect, LD with other genetic variants, especially those physically nearby on the
same chromosome (see Section I.B). The inclusion of perfectly correlated SNPs
would lead to failure of the full rank condition, making estimation of Equation
(9) impossible.
Third, the number of individuals included in the regression is typically much

smaller than the number of measured SNPs, also leading to failure of the full
rank condition even if all SNPs are pairwise uncorrelated. Historically, large
genetic studies were meta-analyses of GWASs, each with sample sizes of only
a few thousand individuals. Even today, the largest datasets have 100,000 up
to a few million individuals—still fewer than the number of measured SNPs.
In principle, machine-learning methods can deal with the latter two challenges.
While such approaches are actively explored (Vattikuti et al., 2013; Mieth et al.,
2016), they have not (yet) been widely adopted.12

For these reasons, the standard approach—called GWAS—has been to estimate
separate regressions by SNP,

(10) y = βGWAS
j xj + zγj + ηj ,

for each of the measured SNPs j, where the vector of control variables z is the
same as in Equation (9). These regressions generate coefficients βGWAS

j that
have a straightforward interpretation in terms of the parameters of interest βj
from Equation (9). If the residual xij ’s after partialling out the controls z were
mutually uncorrelated, then βGWAS

j = βj . More generally, however, βGWAS
j differs

from βj because of LD between SNP j and all other J − 1 genetic variants in the

12There are at least three major reasons for this. First, machine learning methods generally are com-
putationally intensive and require individual-level data. Due to privacy and IRB restrictions for genetic
data, to obtain large sample sizes researchers typically have to meta-analyze regression results across
datasets (rather than pooling and analyzing individual-level data). Many machine-learning methods
cannot be directly applied due to these restrictions. Second, many machine learning methods generate
biased effect estimates, making them hard to interpret. Third, although machine learning may prove
especially useful for prediction by flexibly accommodating non-linearities (e.g. Raben et al., 2023), for
most phenotypes, a linear model is expected to capture most of the predicted variance (see Section II.C).
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genome (including unmeasured variants):

(11) βGWAS
j =

J∑
k=1

rjk⊥z

rjj⊥z
βj ,

where rjk⊥z is the covariance between the residual genotype of SNP j and the
residual genotype of genetic variant k, after partialling out the controls z. To ad-
dress this omitted-variables bias, as we discuss further below, virtually all analyses
of GWAS results take into account the LD matrix of the population under study
in some way.
If the vector of controls z isolates the random component of the genotype vector

xr,i, then the relevant LD matrix is Σr = E
(
xr,ix

′
r,i

)
. In that case, covariances

are zero for genetic variants located on different chromosomes, since chromosomes
are inherited independently. Thus, Equation (11) can be written as βGWAS

j =∑
k∈chr(j)

rjk
rjj

βj , where the rjk’s are now the elements of Σr. If the vector of

controls z does not fully isolate the random component of the genotype vector—as
is likely when imperfect controls such as genetic PCs are relied on—then the
relevant LD matrix is Σ⊥z = E (xi⊥zx

′
i⊥z), where xi⊥z is the residual genotype

vector after partialling out the control vector z. In this case, if the phenotype (or a
correlated phenotype) is subject to assortative mating, the controls are unlikely to
adequately address confounding from the LD that is due to assortative mating,
including cross-chromosome LD (see Section I.C). Thus, for every SNP in the
GWAS, Equation (11) needs to sum over the entire genome.
The primary output of a GWAS is the GWAS summary statistics: the vector

of GWAS estimates for the K measured SNPs,

β̂GWAS =
(
β̂GWAS
1 , β̂GWAS

2 , ..., β̂GWAS
K

)′

,

together with their standard errors or p-values.
In a GWAS, the conventional p-value threshold for statistical significance is

5 × 10−8, which is called the genome-wide significance threshold. This threshold
can be understood as the Bonferroni-corrected 0.05 threshold, given that there
are roughly 1 million independent statistical tests for a GWAS, after accounting
for the LD between the >1 million measured SNPs (Panagiotou and Ioannidis,
2012). Experience indicates that, to date, this threshold has kept the rate of
false positives low in GWAS (e.g. Okbay et al., 2016). However, as genotyping
technology improves and captures rarer SNPs (which necessarily have weaker LD
with other SNPs), GWASs involve more than 1 million independent statistical
tests in European-genetic-ancestry samples (Wu et al., 2017). Moreover, even with
current genotyping technology, there are many more than 1 million independent
statistical tests in samples where LD is on average weaker, such as African-genetic-
ancestry samples. In these cases, lower p-value thresholds will be needed to keep
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the rate of false positives as low as it has been.
The stringent significance threshold, combined with the very small fraction

of variance explained by individual SNPs for polygenic phenotypes, means that
GWAS sample sizes have had to be large to have adequate power. For example,
the largest SNP associations with body mass index (BMI) have an R2 of roughly
0.003 (Locke et al., 2015); those with educational attainment, roughly 0.0002 (Ok-
bay et al., 2016). To attain 80% power to detect these effects at the genome-wide
significance threshold requires sample sizes of ∼13,000 and ∼200,000, respectively.
When a SNP is genome-wide significant, many nearby SNPs will typically also

be genome-wide significant, due to the high local LD. To avoid counting the
same signal multiple times, there are several standard algorithms used to restrict
attention to a more limited set of lead SNPs. For example, a simple, iterative
approach is to identify the SNP with the lowest p-value as a lead SNP, dropping
all genome-wide-significant SNPs whose absolute correlation with the lead SNP
exceeds some threshold, then designating the SNP with the lowest p-value among
the remaining SNPs as a lead SNP, and so on.

F GWAS Follow-Up Analyses

The exponential growth in genetic knowledge in recent years has been fueled,
in large part, by follow-up analyses conducted on the results of increasingly large-
scale GWASs. In the social sciences, the most important of these often use GWAS
summary statistics to construct weights for polygenic indexes, the topic of Section
IV. Here, we briefly describe other common follow-up analyses.
As noted in Section III.E, one challenge for the analysis of GWAS results is

that individual-level data are often not available. Therefore, many of the follow-
up analyses are designed to use the GWAS summary statistics instead. Another
challenge is that the the LD matrix for the GWAS sample is often not made
available. In its place, many of the follow-up analyses instead use the LD matrix
estimated from a reference panel (see Section I.F).
In medical research, GWAS primarily aims to discover biological processes

linked to diseases, thereby guiding the identification of potential targets for drug
development. Many follow-up analyses therefore aim to identify the genes or
regulatory elements of the genome that are causally responsible for the GWAS
associations. The simplest such analysis looks for genes that are close to the set
of lead SNPs. These genes are then looked up in databases listing the known
functions of those genes, often validated in biology labs, providing some evidence
that those functions may be important for the phenotype analyzed in the GWAS.
However, more sophisticated methods have also been developed and applied. For
example, some such “gene discovery” methods use the GWAS summary statistics
and the LD matrix to conduct gene-level tests of association (e.g., de Leeuw et al.,
2015), which aggregate across multiple SNPs. While identifying potentially rele-
vant genes has value, most genetic effects on complex phenotypes are from genetic
variants outside of genes that play some role in regulating gene expression (see,
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e.g., Mostafavi et al., 2023, and the references therein). Another kind of analy-
sis, called “fine-mapping,” aims to localize the source of a GWAS association by
jointly analyzing GWAS summary statistics and LD matrices (potentially from
multiple genetic ancestry groups that have different LD patterns) (for a review,
see Schaid, Chen and Larson, 2018). A large body of research in bioinformatics
combines GWAS summary statistics and LD matrices with databases on gene
expression, gene regulation, protein coding, and/or protein-protein interactions
to refine our understanding of biological pathways from genotype to phenotype
(e.g., Pers et al., 2015).
Another type of follow-up analysis uses the summary statistics to estimate SNP

heritability (see Section II.I). The most commonly used method is LD Score Re-
gression (Bulik-Sullivan et al., 2015a), which exploits the relationship in Equation
(11) between βGWAS

j and SNP j’s LD with other SNPs. Specifically, under the
assumptions of the model, the expected chi-squared test statistic (i.e., squared
z -statistic) for any SNP j,

E
[
χ2
]
= E


 βGWAS

j√
Var

(
βGWAS
j

)


2 ,

is linear in the square of the SNP’s “LD score,” ℓj ≡
∑K

k=1 r
2
jk/ (rjjrkk), which

is a measure of its total correlation with other SNPs. The coefficient on this
relationship is a known linear function of the SNP heritability. Intuitively, for
a complex phenotype diffusely influenced by genetic variants spread across the
genome, the SNPs with higher LD scores—those that are in stronger LD with
more SNPs—will be more strongly associated with the phenotype in a GWAS,
with the slope of this relationship distinguishing between phenotypes that are
more or less strongly genetically influenced overall. Because it can be applied
using only GWAS summary statistics, LD Score Regression is the most widely
used method of estimating SNP heritability (and genetic correlation, discussed
next), but it relies on many strong assumptions, and plausible violations of them
can cause substantial bias (see, e.g., Speed and Balding, 2019, Berg et al., 2019
and Border et al., 2022b). When imperfect controls are used in the GWAS, LDSC

estimates the optimal predictive power, h̆2, rather than the SNP heritability.
Using two sets of GWAS summary statistics for different phenotypes, together

with an LD matrix, another kind of analysis estimates the genetic overlap across
phenotypes. The most commonly used method is bivariate LD Score Regression
(Bulik-Sullivan et al., 2015b). Under some assumptions, for any SNP j, the
expected value of the product of the t-statistics from the two GWASs is linear
in the SNP’s LD score, with the regression coefficient proportional to the genetic
correlation rβ defined in Equation (7). Thus, a regression across all measured
SNPs of the product of GWAS test statistics on the LD scores estimates the
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genetic correlation rβ (or, when the summary statistics come from GWASs with
imperfect controls, it estimates the correlation of optimal predictor weights).
Methods of using GWAS summary statistics to estimate heritability and genetic

correlation can be extended to estimate how much of the heritability or genetic
correlation is due to different types of SNPs. These extensions draw on continually
updated databases that categorize SNPs according to whether or not, for example,
they affect different tissues (musculoskeletal, brain, liver), they are involved in
particular functional pathways, or the genomic sequence they are part of has
been conserved by evolution. For example, extensions of LD Score Regression
make use of sets of LD scores that represent how correlated a SNP is with other
SNPs in a particular category (e.g., Finucane et al., 2015).

G Population, Sibling, and Family-Based GWAS

GWASs can be categorized according to the vector of control variables z in-
cluded in regression (10):

� Family-Based : z includes the mean parental genotype at SNP j, xpar,j , or
both the maternal and paternal genotypes at SNP j, xm,j and xf,j .

� Sibling : z includes sibling fixed effects.

� Population: z includes other ancestry controls, such as genetic PCs.

All of these GWASs differ from the regression (9) on the entire genotype vector in
that only one SNP at a time is included as a regressor. Although these GWASs
differ from each other in terms of how well they control for various confounds,
they all aim to estimate a particular weighted sum of causal effects. Specifically,
the estimand of each GWAS is given by Equation (11) with the causal effects,
repeated here for convenience:

βGWAS
j =

∑
k∈chr(j)

rjk
rjj

βj ,

a weighted sum of causal effects, where the rjk’s are now the elements of Σr =

E
(
xr,ix

′
r,i

)
, which includes unmeasured variants. Arguments analogous to those

in Sections III.B, III.C, and III.D tell us how well each type of GWAS identifies
βGWAS
j , as we summarize now.

Family-based GWAS identifies βGWAS
j from the random component of the geno-

type at SNP j, the deviation of the genotype from its expectation: xj,r =
xj − E [xj |xj,p] = xj − xj,p. This identifying variation is mean-independent from
the parental genotype and from the GWAS regression error: E [xj,r|xj,p] = 0 and
E [ηj |xj,r] = 0. Thus, family-based GWAS is an unbiased and consistent estimator
for βGWAS

j .
Sibling GWAS uses the difference between the individual’s genotype at SNP j

and his or her siblings’ genotype. In the most typical case of sibling pairs, the
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identifying variation is xj −
(
xj+xj,sib

2

)
= 1

2 (xj − xj,sib). Although this variation

is mean-independent from the parental genotype and from the GWAS regression
error — E

[
1
2 (xj − xj,sib) |xj,p

]
= 0 and E

[
ηj |12 (xj − xj,sib)

]
= 0 — it identifies∑K

k=1 rjk (βj − βj,sib) rather than
∑K

k=1 rjkβj . Thus, sibling GWAS is a biased
estimator for βGWAS

j whenever βj,sib ̸= 0. Rather than running sibling regression,
imputing parental genotypes and then running family-based GWAS eliminates
the bias, as long as family random effects are included to control for non-genetic
family variation, and is also more efficient (Young et al., 2022).
Population GWAS is a biased estimator for βGWAS

j to the extent that the con-
trols z are an imperfect proxy for the parental genotypes. In this scenario, some
omitted-variable bias persists since the genotype xj conditional on z is not un-
correlated with the residual. If the controls do not perfectly capture genetic
ancestry, then there will be some bias due to population stratification, parental
genetic effects, assortative mating, and other sources of correlation between xj
and ηj .
Currently, nearly all published GWASs are population GWASs because datasets

with genotyped family members have been too small to enable well-powered sib-
ling or family-based GWASs. Holding fixed the number of individuals in the
GWAS, sibling and family-based GWASs are usually much less powerful than
population GWASs for three reasons. First, the population GWAS estimates
tend to be biased away from zero. Second, the within-family genetic variation is
one-half or less of the population genetic variation (see Section III.B), leading to
larger standard errors. Third, if the study includes sibling pairs, some informa-
tion is used to estimate the random or fixed effect for each sibling pair, reducing
the degrees of freedom.13 Roughly speaking, a GWAS using parental genotypes
as controls requires roughly twice the number of individuals (not including par-
ents) than a population GWAS to obtain comparably sized standard errors, and
a sibling-based GWAS needs even more.
To date, only one large-scale GWAS based on primarily family data has been

published Howe et al. (2022b). It is a meta-analysis of sibling GWASs for 25
phenotypes conducted in 19 datasets, with a total sample size ranging from
roughly 13,000 to roughly 164,000 European-ancestry individuals, depending on
the phenotype. For molecular phenotypes, such as low-density-lipoprotein choles-
terol, the study’s results were largely in line with previously reported findings
in population GWASs. By contrast, for many of the social and behavioral phe-
notypes—educational attainment, age at first birth, number of children, cogni-
tive ability, depressive symptoms, and smoking—the sibling-GWAS estimates of
βGWAS
j were smaller in magnitude on average than the population-GWAS esti-

mates, consistent with what had previously been reported for some social and

13By contrast, if siblings have correlated residuals, or if the parental genes explain a high proportion
of the residual variance, then standard errors will be reduced. In practice, however, these effects only
generate modest efficiency gains and are never large enough to offset the loss in power from the three
factors described above.
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behavioral phenotypes. For example, Lee et al.’s (2018) population-based GWAS
of educational attainment reported a follow-up analysis of 22,135 sibling pairs
that found within-family associations were deflated by ∼ 40%. They found that
assortative mating could explain at most one third of the observed deflation, with
most remaining deflation likely explained by omitted-variable biases (from non-
genetic omitted factors) in the original GWAS. For comparison, they conducted
an analogous analysis of height, finding more modest deflation, all of which could
plausibly be attributed to assortative mating (See also the follow-up analyses in
Okbay et al., 2022).
Howe et al.’s (2022b) sibling GWAS also produced some notable differences

in the GWAS follow-up analyses. For example, the genetic correlation between
BMI and educational attainment, estimated from population-GWAS summary
statistics, was -0.32, compared to -0.05 when the sibling summary statistics were
used. A plausible interpretation of the discrepancy is that the z’s used in the
original population-based GWASs failed to eliminate all confounding from factors
that have correlated effects on BMI and education. We anticipate that the coming
years will see many more sibling and family-based GWASs, and other conclusions
drawn from population GWASs will need to be updated accordingly.

H Eurocentric Bias

As noted above in Section III.D, in an attempt to mitigate bias from gene-
environment correlation, GWASs have traditionally been restricted to samples
of relatively homogeneous genetic ancestry. The largest such samples have been
from countries in Europe, the UK, the US, Australia, and New Zealand (Mills
and Rahal, 2019), partly because these countries are wealthy and had the re-
sources to fund large-scale genotyping efforts. As of June 2023, based on data
from the GWAS Diversity Monitor (Mills and Rahal, 2020), an online database
of GWASs, the average percentage of European-genetic-ancestry subjects in pub-
lished studies is ∼95%, compared to their ˜15% share of the global population.
This disproportionate tilt of genetics research is called Eurocentric bias.
Eurocentric bias in GWASs is widely considered to be a major problem (e.g.,

Martin et al., 2019; Duncan et al., 2019). One concern is that genetics research will
disproportionately benefit individuals of European genetic ancestries, for example,
because the research has focused on diseases that are more prevalent among these
individuals. Another concern is that the common practice of dropping data from
other genetic ancestry groups is scientifically inefficient, especially since such data
can be especially valuable for “fine-mapping” studies that aim to identify causal
genetic variants (see Section III.F). A third concern is that, as we discuss in
Section IV.C, the polygenic indexes constructed from existing GWAS results are
less predictive among individuals with non-European genetic ancestries. In social-
science applications, this “limited portability” of polygenic indexes often reduces
their value.
Many efforts to mitigate Eurocentric bias are currently underway. Some of these

37

https://gwasdiversitymonitor.com/


are national biobanking efforts in some non-European-genetic-ancestry counties,
with the largest samples to date being the China Kadoorie Biobank (a study with
∼100,000 genotyped individuals currently) and Biobank Japan (200,000 geno-
typed individuals currently). In the U.S., initiatives such as the Million Veterans
Project, All of Us, the Multi-Ethnic Study, and the Atlas Study are collecting
relatively large minority samples. The Pan UKB Project has analyzed data from
the UK Biobank for individuals with non-European genetic ancestries that would
normally be discarded. Direct-to-consumer genetic testing companies, despite
having a disproportionately European-genetic-ancestry customer base, nonethe-
less have many non-European-genetic-ancestry customers who have consented to
participate in research. Some of these companies, such as 23andMe, are helping
to mitigate Eurocentric bias by contributing to GWASs in diverse samples (Yengo
et al., 2022). Funding agencies, including the U.S. National Institutes of Health,
have prioritized collecting and analyzing genetic data from non-European-genetic-
ancestry samples. Major journals for genetics research have prioritized publishing
such work.
Unfortunately, the genetic-data-collection efforts in developing countries remain

small. This hampers genetics research since populations in these countries, espe-
cially in Africa, harbor a huge fraction of the global genetic diversity (Mills and
Rahal, 2019).

IV Polygenic Indexes

Most applications using genetic data in the social sciences use polygenic indexes
(PGIs), and increasingly so in recent years. Although PGIs had been discussed
earlier (Wray, Goddard and Visscher, 2007), the first paper in humans genetics
to construct and analyze a PGI was a GWAS of schizophrenia published in 2009
(Purcell et al., 2009). Since 2009, PGIs have been increasingly used in research
related to the genetics of behavioral phenotypes (Becker et al., 2021). There are
two main reasons for the use of PGIs in social-science research, one statistical
and one conceptual. Statistically, because PGIs generally explain much more
variance than individual SNPs, analyses using a PGI will generally have much
greater statistical power. Conceptually, as we discuss, the PGI is an empirical
proxy for the additive SNP factor and thus captured the combined explanatory
power of measured SNPs. In this section, we discuss PGIs, their predictive power,
and their appropriate interpretation.

A PGI Definition and Interpretation

In general, we define a PGI as a standardized, weighted sum of the genotypes
of a set of measured genetic variants:

gw ≡ x̃w

std (x̃w)
,
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where x̃ is the vector of measured genotypes, w is a vector of weights (the “PGI
weights”), and std (·) takes the standard deviation of its argument across a pop-
ulation of individuals. Typically, the measured genotypes are SNPs, and the PGI
weights are chosen with the goal of having the PGI approximate the standard-
ized additive SNP factor for some phenotype (defined in Section II.I) as well as
possible.14

The PGI would equal the standardized additive SNP factor if w = β̃, where β̃ is
the vector of population regression coefficients defined in Equation (5). However,
the vector of weights cannot be set equal to β̃ because β̃ is unknown. In practice,
researchers usually aim to set w equal to an estimate of β̃. Most of the commonly
used estimators take as inputs a set of GWAS summary statistics (β̂GWAS and
their standard errors), an LD matrix estimated in some reference sample, and a
prior distribution of effect sizes.15 The estimators adjust the GWAS estimates
to take into account correlation across SNPs, as captured by the LD matrix,
and shrink them toward the prior. Specifically, the estimators set each SNP’s
PGI weight equal to the mean of its Bayesian posterior-effect distribution; the
estimators differ from each other mainly in their assumptions about the prior
distribution and, for computational tractability, in the assumptions and approxi-
mations they make about the LD matrix (e.g., Vilhjálmsson et al., 2015; Ge et al.,
2019; Zhang et al., 2021; Lloyd-Jones et al., 2019). These differences affect finite-
sample performance and computational speed but do not matter for the purposes
of discussion here.
We denote the resulting weights by β̂ and the corresponding PGI by

ĝ ≡ x̃β̂

std
(
x̃β̂
) .

In practice, β̂ is based on GWAS estimates using imperfect controls, meaning that
it is an estimate of the optimal predictor weights, β̆. (If the controls were sufficient

for the GWAS to have a causal interpretation, then β̂ would be an estimate of
the additive SNP factor weights.) In what follows, to keep focus on the central
issues, we assume the LD matrix is estimated in a sample drawn from the same
population as the GWAS population, and that the LD-matrix-estimation sample
grows at the same rate as the GWAS sample (as would be true, for example, if the
LD matrix were estimated in the GWAS sample itself). In Section IV.C below,

14The discussion and analysis in this subsection apply also to PGI weights chosen such that the PGI
approximates some other quantity. For example, the genetic PCs estimated from a sample (discussed in
Section III.D) are PGIs that aim to approximate the population’s (true) genetic PCs.

15A simpler approach, developed earlier and still widely used (especially in medical applications), is
called “pruning and thresholding.” In this approach, the PGI is constructed from a set of approximately
mutually uncorrelated (“pruned”) SNPs whose p-value is below some threshold. For highly polygenic
phenotypes—including social and behavioral phenotypes—pruning-and-thresholding makes less sense
than approaches that use all the measured SNPs because all the measured SNPs could add information to
the PGI. In addition to Bayesian approaches and pruning-and-thresholding, which are the most commonly
used, machine-learning approaches also exist (e.g., Widen et al., 2021; Zhao et al., 2021).
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we discuss the implications of using PGI weights based on a population that is
different from the population of the prediction sample.
As noisy estimates of the optimal predictor weights, the PGI weights can be

expressed as β̂ = β̆ + u for some sample-error vector u. The PGI can therefore
be interpreted as a standardized, noisy measure of the optimal predictor ğ:

(12) ĝ =
x̃β̂

std
(
x̃β̂
) =

x̃
(
β̆ + u

)
std
(
x̃β̂
) =

x̃β̆ + x̃u

std
(
x̃β̂
) =

ğ + e

std (ğ + e)
,

where e ≡ x̃u is noise that comes from the sampling error u. If β̂ were estimated
by multivariate regression of the phenotype on x̃ and z, the noise e would be mean
zero, uncorrelated with the optimal predictor ğ, and independent of all variables
in any independent prediction sample. Moreover, it follows from Cov (ğ, e) = 0
that Var (ğ + e) = Var (ğ)+Var (e). For the standard approaches to constructing
a PGI discussed above, these properties do not hold, but they hold approximately
if the GWAS sample size (the sample size underlying β̂GWAS and the estimated
LD matrix) is large. Becker et al. (2021, see Supplementary Materials 4) derives
formulas for these approximations and calculates that the approximations are
tight for the PGI derived from a recent GWAS of educational attainment (Lee
et al., 2018). In that case, e can be treated as classical measurement error.
This result that the PGI is a standardized, noisy measure of the optimal predic-

tor with classical measurement error is important—much of what follows below
will rely on it—and perhaps surprising. One might have had the intuition that the
measurement error would be non-classical because the PGI coefficients β̂ are esti-
mated less precisely for some SNPs (rarer SNPs, which have less genotypic varia-
tion) than others. If the SNPs’ genotypes were measured with different amounts of
error, the measurement error would indeed be non-classical, but different amounts
of measurement error in the PGI weights do not cause the measurement error in
the PGI to be non-classical.

B Predictive Power of a PGI

In this subsection, we derive an analytic formula for the predictive power of a
PGI. In some applications, including clinical use of PGIs to assess disease risk
(e.g., Khera et al., 2018), the predictive power of a PGI is central to its usefulness.
In social-science research applications, the predictive power of a PGI is a central
factor in the statistical power of the analysis.
We focus on a univariate regression of a phenotype y on the PGI ĝ for that

phenotype, and briefly discuss afterward how covariates complicate the analysis.
Our measure of predictive power is the coefficient of determination (R2) from a
population regression of y on ĝ in a prediction sample that is independent from
the GWAS sample used to estimate the PGI weights. We begin by considering
the case where the GWAS and prediction samples are randomly sampled from the
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same population. Our derivation follows Daetwyler, Villanueva and Woolliams
(2008) and generalizations in subsequent work (de Vlaming et al., 2017a; Okbay
et al., 2022; Wang et al., 2023). In a univariate regression, R2 is equal to the
squared correlation coefficient:

(13) R2 =
[Cov (y, ĝ)]2

Var (y)Var (ĝ)
= h̆2

(
h̆2

h̆2 +Var (e) /Var (y)

)
= h̆2

(
h̆2

h̆2 +M/N

)
,

where M is a constant and N is the GWAS sample size underlying the PGI
weights.16 The second equality is derived in Appendix II, and the third equality
follows because Var (e) converges to zero with the GWAS sample size at rate 1/N .
The two terms in Equation (13) have interpretations that will persist through

the various cases we consider below. The first term, which is the optimal predic-
tive power h̆2, is the R2 from a hypothetical regression of the phenotype on the
(unobserved) optimal predictor. Since it is the predictive power that would be
achieved if the PGI weights were estimated from an infinite GWAS sample, we call
it the asymptotic-R2 term. The second term in Equation (13)—which we call the
estimation-precision term—is between 0 and 1 and is related to the signal-noise
ratio in the GWAS: the optimal predictive power h̆2 is a measure of the signal,
and Var (e) /Var (y) is a measure of the noise. The estimation-precision term is
increasing in the GWAS sample size and asymptotes to 1.
The constant M depends on the LD matrix, which will vary depending on the

population’s genetic ancestry. Under our assumption that the LD matrix is full
rank, M is equal to the number of SNPs in the PGI. Otherwise, M is smaller than
that number. Using population genetic theory, some simplifying assumptions, and
estimates of related quantities, M has been roughly estimated to be 60,000 to
70,000 in European-genetic-ancestry populations (Hayes, Visscher and Goddard,
2009; Rietveld et al., 2013; Wray et al., 2013). Alternatively, M can be estimated
by fitting Equation (13) based on the N ’s of previous GWAS and the R2’s of the
resulting PGIs (as in Okbay et al., 2022). After either calibrating M ≈ 70, 000 or
estimating M from previous GWASs, Equation (13) can be used to forecast the
predictive power of a PGI from a future GWAS with a larger sample size.
We now generalize Equation (13) to the case where the to-be-predicted outcome,

denoted ypred, may be different from the PGI phenotype, denoted yGWAS , and
the prediction population may be different from the GWAS population. In a first
step, we continue to assume the two populations have a common LD matrix; we
relax this assumption in Section IV.C below. We need to distinguish between the
optimal predicitve power for yGWAS in the GWAS population, denoted h̆2GWAS ,
and the optimal predictive power for the prediction outcome in the prediction

16In its original formulation, Daetwyler, Villanueva and Woolliams (2008) assumes that the PGI

weights are unbiased estimates of the additive SNP factor such that h̆2 = h̃2.
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population, h̆2pred. In Appendix II, we show that the predictive power is now:

(14) R2 =
(
h̆2predr

2
xβ

)( h̆2GWAS

h̆2GWAS +M/N

)
,

where rxβ is the correlation between the optimal predictors across the two popu-
lations, a type of “genetic correlation” as defined in Section II.J.
The estimation-precision term is the same as in Equation (13), with param-

eters that depend on the GWAS phenotype, population, and sample size. The
asymptotic-R2 term, however, is now the optimal predictive power for ypred in

the prediction population, h̆2pred, multiplied by r2xβ. The optimal predictive power

h̆2pred could be larger or smaller than h̆2GWAS , depending on, among other things,
what ypred and yGWAS are, how they are measured, and what the GWAS and
prediction populations are. The attenuation factor r2xβ is bounded above by 1—a
bound achieved when, for example, the phenotype and populations in the predic-
tion and GWAS samples are identical—and will be smaller than 1 to the extent
that the optimal predictors for ypred and yGWAS differ.
Empirically, when researchers examine the predictive power of a PGI, they most

commonly report the incremental R2: the change in R2 from adding the PGI to
a regression of the phenotype on a baseline set of covariates. These baseline
covariates are typically the same as those included in a GWAS: age, year of birth,
and genetic principal components. To illustrate, Figure 2 shows how, for each of
two prediction datasets, the incremental R2 of the PGI for educational attainment
has increased as GWAS discovery samples have increased from ∼100K individuals
to ∼ 3M individuals. The two prediction datasets are the Health and Retirement
Study (HRS), a U.S. nationally representative sample of older Americans, and
the National Longitudinal Adolescent to Adult Health Study (Add Health), a
U.S. nationally representative sample of younger Americans. In both datasets,
the predictive power of the PGI is increasing in the GWAS sample size. At each
sample size, the predictive power appears to be larger in Add Health.
Equation (13) is derived for a univariate regression, rather than for the incre-

mental R2 between two multivariate regressions, but it can nonetheless provide
some useful insights. For example, the equation implies that the difference in pre-
dictive power across the datasets is due to a difference in h̆2predr

2
xβ; Okbay et al.

(2022) indeed estimate a larger optimal predictive power h̆2pred in Add Health, al-

beit with large standard errors. The dashed line fits Equation (13) to the points
in the figure separately for each dataset. The functional form implied by Equation
(13) provides a good fit, except for the predictive power in Add Health from the
most recent GWAS, which is larger than expected.
As another empirical illustration of Equation (13), Mostafavi et al. (2020) study

PGIs for diastolic blood pressure, BMI, and educational attainment and document
how their predictive power varies with the sex, age, and socioeconomic status of
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Figure 2. Predictive Power of PGI for Educational Attainment as a Function of
Sample Size

Note: The x -axis is the sample size of the GWAS on a log scale. The y-axis is the incremental R2 of the
EA PGI constructed from the GWAS summary statistics, in each of two prediction samples independent
of the samples used in the original GWAS meta-analysis. Incremental R2 is the increase in R2 after
adding the PGI to a regression of years of schooling on the following controls: a full set of dummy
variables for year of birth, an indicator variable for sex, a full set of interactions between sex and year of
birth and the first ten genetic PCs.

43



the prediction sample. Consistent with Equation (13), for each PGI separately,
Mostafavi et al. (2023) find that the incremental R2 is larger when the GWAS
sample is demographically more similar to the prediction sample (implying higher
r2xβ) and when the optimal predictive power is larger in the prediction sample.

Although an incremental R2 relative to a baseline set of covariates can be a
useful measure, it may be a misleading measure of the gain from including the
PGI in social-science research for two reasons. First, such analyses often include
a richer set of covariates that absorb more of the variation explained by the PGI.
To illustrate this point, Lee et al. (2018, see their Supplementary Figure 12(b))
report how the incremental R2 of the PGI for educational attainment declines
as additional covariates are included in the regressions. With just the baseline
covariates of age, sex, and genetic PCs, the incremental R2 is roughly 11%, but
it falls to roughly 5% when additionally controlling for marital status, income,
mother’s education, and father’s education. Second, the incremental R2 may
not be the relevant measure of predictive power, depending on the purpose of
the analysis. For example, we show in Section V.A that, for the purpose of
increasing the precision of a treatment effect estimate, the efficiency gains from
controlling for PGIs can be substantial, even when—indeed, especially when—a
set of covariates explain much of the variation. In that context, the relevant
measure of predictive power is the R2 from a regression of the residual (of the
outcome after controlling for the covariates) on the PGI. This R2 is larger when
the covariates explain more variation.

C Limited Portability of PGIs across Populations

For applications, one major limitation of PGIs is that, at present, their pre-
dictive power is typically much lower in populations of non-European ancestry
individuals. In the literature, this issue is often called the problem of limited
“portability.”
To shed some light on some of its causes, we generalize Equation (14). A

key difference when the GWAS and prediction samples consist of people with
different genetic ancestries is that the LD matrix in the GWAS sample, ΣGWAS ≡
Var (x̃GWAS), is not equal to the LD matrix in the prediction sample, Σpred ≡
Var (x̃pred). For expositional ease, define the LD-difference matrix: ∆Σ ≡ Σpred−
ΣGWAS , where the negative sign denotes standard elementwise subtraction. In
Appendix II, we show

R2 =
(
h̆2predr

2
g

)
×


h̆2GWAS +

β̆′
GWAS∆Σβ̆GWAS

Var(yGWAS)

h̆2GWAS +
β̆′
GWAS∆Σβ̆GWAS

Var(yGWAS)
+

sum
(
Σpred ◦ Σ−1

GWAS

)
N

 ,(15)

where β̆GWAS is the vector of optimal predictor weights for yGWAS in the GWAS
sample (not the vector of GWAS summary statistics β̂GWAS), r2g is the correlation
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between the optimal predictor in the prediction sample (x̃predβ̆pred) and a PGI
in the prediction sample that uses the GWAS-sample optimal predictor weights
(x̃predβ̆GWAS), ◦ denotes the elementwise multiplication matrix operator, and
sum (·) is the “grandsum” matrix operator that returns the scalar sum of the
matrix elements. As far as we are aware, Equation (15) has not been derived
previously, though related formulas have been derived (Wientjes et al., 2016,
2015; Ding et al., 2023; Wang et al., 2020). For example, Ding et al. (2023) and
Wang et al. (2020) derive approximations based on a model that treats the set
of SNPs with non-zero effects as known, with random effect sizes drawn from a
parametric distribution.
In addition to generalizing the squared genetic correlation parameter r2g , Equa-

tion (15) has two changes relative to Equation (14). The first is that a new term,

β̆′
GWAS∆Σβ̆GWAS , appears in both numerator and denominator. We label it the

weighted LD-difference term, because it is a weighted sum of the LD-difference
matrix, ∆Σ. Intuitively, it captures the difference between the samples in the
frequencies of alleles that have larger coefficients in predicting the phenotype.
Formally, a diagonal element of ∆Σ contributes positively to this term if the SNP
has greater genotypic variance—that is, minor allele frequencies closer to 50%—in
the prediction sample than in the GWAS sample. The weight on a diagonal term
is the SNP’s squared optimal predictor weight in the GWAS sample. An off-
diagonal element of ∆Σ contributes positively to this term if the pair of SNPs has
greater genotypic covariance—i.e., stronger LD—in the prediction sample than
in the GWAS sample. The weight on an off-diagonal term is the product of the
SNPs’ optimal predictor weights. As discussed in Section I.E, the major reason
different populations have different LD matrices is genetic drift. Under a model
of genetic drift in which the prediction and GWAS populations diverged from a
common ancestral population, the weighted LD-difference term will be zero in ex-
pectation. However, for any particular pair of GWAS and prediction samples, it
could be positive or negative.17 Depending on its sign and its magnitude relative
to other terms, the weighted LD-difference term could either increase or decrease
R2.
Second, the estimation error (one piece of the estimation-precision term) be-

comes 1
N sum

(
Σpred ◦Σ−1

GWAS

)
. This term still vanishes at rate N , but for a

given GWAS sample size N , it will generally be larger than when the GWAS
and prediction populations coincide. Intuitively, the SNPs that have the largest
genotypic variance in the GWAS sample—which are the SNPs that contribute
most to prediction accuracy in the GWAS sample—are those whose optimal pre-
dictor weights are estimated most precisely, but those SNPs may not be the ones

17Three other forces also cause LD matrices to diverge between populations: natural selection, assor-
tative mating, and mutation. Natural selection is discussed in Section I.E. Both directional selection and
stabilizing selection increase the magnitude of correlation between alleles that have the strongest effect
on the phenotype. As we discuss elsewhere, assortative mating increases genetic variance (see Section
III.B) and the magnitude of correlation for alleles associated with the sorting phenotype (see Section I.C).
Differences in LD matrices due to mutation are small over the time scale of modern human populations.
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that have the largest genotypic variance in the prediction sample. Formally, if the
GWAS and prediction populations have the same LD matrix, the estimation error
equals 1

N sum (I) = M
N as in Equation (14) above. If the two populations diverged

from a common ancestral population, under a model of genetic drift, we can think
of Σpred and ΣGWAS as random variables that are independent conditional on
the LD matrix of the ancestral population Σanc. In the special case where Σpred

and ΣGWAS are diagonal, it is straightforward to see that the estimation error is
expected to be larger than M

N :

Eσ2
pred,σ

2
GWAS

 1

N

M∑
j=1

σ2
pred,j

σ2
GWAS,j

 =
M

N
Eσ2

pred,σ
2
GWAS

(
σ2
pred,j

σ2
GWAS,j

)

=
M

N
EΣanc

(
Eσ2

pred,σ
2
GWAS

(
σ2
pred,j

σ2
GWAS,j
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))

≥ M

N
EΣanc

 Eσ2
pred

(
σ2
pred,j |Σanc

)
Eσ2

GWAS

(
σ2
GWAS,j |Σanc

)
 =

M

N
,

where the inequality follows from Jensen’s inequality.
In practice, the GWASs underlying PGI weights are typically conducted in

samples of individuals of European genetic ancestries (see Section III.H). On
average across phenotypes, and for almost all phenotypes that have been stud-
ied, PGIs have less predictive power in samples of non-European-genetic-ancestry
individuals. For example, Martin et al. (2019) find that, on average across 17 an-
thropometric and blood phenotypes, relative to the PGI R2 in European-genetic-
ancestry samples, the R2 is ∼ 33% smaller in native American and South Asian
genetic-ancestry samples, ∼ 50% smaller in East Asian genetic-ancestry samples,
and ∼ 75% smaller in African genetic-ancestry samples (Similar results are re-
ported in Duncan et al., 2019 and Martin et al., 2017). The decline in the PGI R2

from European-genetic-ancestry to African-genetic-ancestry populations is even
more pronounced for educational attainment, roughly 85% (Lee et al., 2018; Ok-
bay et al., 2022).
Consistent with the estimation-precision term in Equation (15), the average de-

cline in predictive power tracks qualitatively with genetic distance from European
genetic ancestry (and indeed, even among individuals with European genetic an-
cestry, average predictive power of a PGI is lower for individuals more distantly
related to the GWAS sample; Ding et al., 2023). To estimate quantitatively
the extent to which differences in LD matrices explain the decline in predic-
tive power for various phenotypes, Wang et al. (2020) used an approximation
to Equation (15), together with estimates of LD matrices from different popula-
tions and GWAS results for eight anthropometric and health-relevant phenotypes.
They find that 70%-80% of the drop in PGI R2 from European-genetic-ancestry
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to African-genetic-ancestry populations can be accounted for by the LD-matrix
differences. Following the same estimation strategy for educational attainment,
Okbay et al. (2022) estimate a larger drop in PGI R2 than can be accounted for
by the LD-matrix differences.
Equation (15) implies that the remaining differences in PGI R2 across popu-

lations are due to some combination of the weighted LD-difference term, h̆2pred
differing from h̆2GWAS , and r2g < 1. The relative contributions of these factors is

unknown. However, we expect r2g < 1 because gene-environment interactions are
probably common, (exogenous) environmental factors are often correlated with
genetic ancestry, and non-additive genetic effects may play a role across genetic
ancestries (particularly epistasis involving variants whose allele frequencies differ
across genetic ancestries).
In the long term, constructing more predictive PGIs in non-European-genetic-

ancestry populations will become possible as more genotyped samples from those
populations become available. In those larger samples, GWASs can be conducted,
and population-specific PGI weights can be obtained. In the shorter term, new
statistical methods can partially substitute for larger GWAS samples (Turley
et al., 2021a; Ruan et al., 2022; Miao et al., 2022). These methods leverage re-
sults from large-scale GWASs in European-genetic-ancestry populations to create
synthetic GWAS results for other populations, using the populations’ LD matrices
to “translate” GWAS associations across populations.
The discussion above has focused on the problem of using PGIs trained in

one population to predict phenotypic variation within a population with differ-
ent genetic ancestry. Additional challenges arise when comparing the level of a
PGI across individuals from different populations. Even when the two popula-
tions are genetically similar, such comparisons can be confounded by different
mean levels of the phenotype (for non-genetic reasons), different true genetic ef-
fects across the populations (most notably due to gene-environment interactions),
different patterns of gene-environment correlation, and different prediction-error
variances. When the populations are from different genetic ancestries, the LD
matrices differ—implying that the SNPs included in the PGIs will capture causal
effects (including those of unmeasured genetic variants) to different degrees—and
the non-genetic differences may be greater, exacerbating these challenges. Indeed,
comparisons of PGI levels across populations with different genetic ancestry are
unlikely to be valid in most cases (unless the ancestries are sufficiently similar).
Martin et al. (2017) (their Figure 4A) provided a striking empirical example: they
compared the distributions of height PGIs for several different populations with
different genetic ancestries using data from the 1000 Genomes Project. They
found that the African populations sampled are genetically predicted to be con-
siderably shorter than all the European populations sampled, which contradicts
empirical observations on measured height.
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D Estimating and Interpreting the “Causal Effect of a PGI”

In this subsection, we discuss what is meant by the “causal effect of a PGI”
and how it can be estimated. As far as we are aware, the material in this section
is new.
We put “causal effect of a PGI” in quotes because we do not have in mind a

hypothetical experiment in which we examine the effect of changing the PGI. For-
mulating such a hypothetical experiment is challenging, for two reasons.18 First,
the PGI weights typically do not represent causal effects of the SNPs included
in the PGI. Even if the PGI weights were obtained from a family-based GWAS,
the PGI weight on a SNP partly reflects the causal effects of unmeasured genetic
variants that are correlated with measured SNPs. (For this same reason, in Sec-
tion II.I, we could not define the additive SNP factor in the potential outcomes
framework.) Second, the PGI is an index. Thus, even if the PGI weights were the
causal effects of the included SNPs, which SNPs’ genotypes were changed when
considering a hypothetical experiment of changing the PGI by some amount could
matter. Thus, two individuals whose PGIs changed by the same amount might
have different hypothetical experiments that define the effect.19 Instead, what
we can hope for—and, in fact, what we can achieve because the PGI is an addi-
tive index—is to define the “causal effect of a PGI” as a weighted sum of causal
effects of genetic variants (that are either themselves included in the PGI or in
LD with SNPs that are included in the PGI due to linkage). An advantage of
this definition (in contrast to some other possible definitions) is that it makes the
“causal effect of a PGI” estimable. In this subsection, we derive and interpret
this weighted sum of causal effects and show that it is estimated by a regression
that controls for parental PGIs.
To begin, recall from Section III.B that an individual’s genotype vector, x,

can be decomposed into the mean parental genotype vector, xp ≡ xf+xm

2 , and

a random deviation, xr ≡ x − xf+xm

2 . There, we considered the population
regression of some outcome variable y on x and xp,

(16) y = xβ + xpbp + ξ,

18Perhaps the most compelling hypothetical experiment would be to imagine that prospective parents
create many embryos, one of which is chosen at random and results in a live birth. Each embryo has a
different genotype vector randomly assigned conditional on the parents) and therefore a different PGI.
The association between the PGIs and the potential outcomes has a causal interpretation—but it is an
average treatment effect conditional on the parents, and it is not clear how it relates to a quantity that
could be estimated. Moreover, it does not solve the two conceptual challenges to defining the “causal
effect of a PGI” described in this paragraph.

19Which genotypes were changed would not matter if two conditions are both satisfied: (i) the additive
model is true, and (ii) the analysis focuses on the phenotype corresponding to the PGI (for example, an
analysis of educational attainment using the PGI for educational attainment). While (i) may often be
a reasonable approximation, most social-science applications of PGIs violate (ii). For example, consider
a study of the effect of the PGI for educational attainment on income (as in Papageorge and Thom,
2020). To see how it may matter which genotypes were changed, suppose changing either of two SNPs
would increase the PGI by one unit. If one of the SNPs affects income and the other does not, the two
hypothetical experiments have different effects.
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and discussed why the coefficient on the child’s genotype vector, β, is the vector
of causal genetic effects and why the coefficient on the parent’s genotype vector,
bp, generally does not have a causal interpretation. Note that for what follows,
whether y is the phenotype corresponding to the PGI or some other outcome
makes no difference.
Using the same decomposition of the genotype vector, any PGI with weight

vector w can be expressed as

gw ≡ xw

std (xw)
=

xrw

std (xw)
+

xpw

std (xw)

where (unlike in Section IV.A above) we now express the PGI as a weighted sum
of the genotypes of all genetic variants, with wj = 0 for every unmeasured genetic
variant j. Now consider a population regression of y on the individual’s PGI gw
and the sum of parental PGIs, pw ≡ xfw

std(xw) +
xmw

std(xw) :

(17) y = αggw + αppw + u

(where we define pw as a sum rather than an average because it makes the ex-
pressions for αp and αg symmetric). In Appendix III, we derive the relationship
between the coefficients from the regressions in equations (16) and (17). Although
our analysis there is more general and the resulting formulas correspondingly more
complex, here we present the results under the assumption of a randomly mating
population:

(18) αg =
w′Σβ

w′Σw

(19) αp =
w′Σbp

w′Σw
,

where Σ ≡ Var (x) = Var (xf ) = Var (xm) is the LD matrix, which is the same in
the parents and children due to the random-mating assumption. Equations (18)
and (19) state that the coefficients in Regression (17) are the coefficients from a
generalized least squares regression of the respective coefficients from Regression
(16)—either the genetic causal effects (the βj ’s) or the parental coefficients (the
bpj ’s)—onto their PGI weights (the wj ’s).
Equation (18) has a key implication: the coefficient αg from a regression of an

outcome y on a child’s PGI, controlling for the sum of parental PGIs, represents
causal effects of genetic variants. Specifically, αg is a weighted sum of the elements
of β, which are causal effects. The relative weight on the causal effect of genetic
variant j depends on its own PGI weight wj and the PGI weights of the other
(measured or unmeasured) SNPs with which it is correlated. Rare SNPs (which
are only weakly correlated with measured SNPs) and unmeasured SNPs (whose
causal effects are only captured via correlation with measured SNPs) will tend
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to be weighted less heavily than common and measured SNPs. In Appendix III,
we show that while the equation itself is more complicated, the key implication
of Equation (18)—that αg is a function only of the causal effects β and not of
bp—holds more generally, including in situations with assortative mating.
In contrast to αg, Equation (19) implies that αp does not generally have a

causal interpretation, since bp does not. (As mentioned in Section III.B, having a
causal interpretation for bp would require controlling for the grandparental PGIs
in regression Equation (16). In that case, the coefficient on the sum of parental
PGIs would be a weighted sum of causal parental genetic effects (see Section
II.F).) Furthermore, in the general case with assortative mating, we show that αp

is a function of both β and bp. Because it can partly (or even wholly) reflect β,
interpreting αp as the “non-genetic” or “environmental” effect is not accurate.
Just as β is identified if regression Equation (16) includes the father’s and

mother’s genotypes separately rather than the mean parental genotype, αg is
identified if regression Equation (18) includes the father’s and mother’s PGIs
separately rather than the sum of parental PGIs. Including the father’s and
mother’s PGIs separately enables comparisons of the magnitudes of the father’s
and mother’s coefficients. More generally, αg remains identified when controls
are added to regression Equation (18), as long as the controls are not themselves
caused by genotypes, because the random component of the child’s PGI is inde-
pendent of such controls. For including the father’s and mother’s PGIs separately
and more generally for including controls, there are opposing effects on precision:
adding covariates adds degrees of freedom but can absorb more of the residual
variation.
Currently, rather than controlling for parental PGIs, including siblings in the

analysis and controlling for sibling fixed effects is more common. As in the
case of estimating the effects of genotypes discussed in Section III.C, it is not
widely appreciated that the regression with sibling fixed effects generates a bi-
ased estimator of the self genetic effect in the presence of sibling genetic effects
and is inefficient relative controlling for the sum of parental PGIs. In the case
of PGIs, the identifying variation with sibling fixed effects is the individual’s
PGI relative to the sibling mean, written here for the case of sibling pairs:

g −
(g+gsib

2

)
= 1

2 (g − gsib) = 1
2
(x−xsib)w
std(xw) , where the subscript “sib” denotes an

individual’s sibling. Variation in 1
2 (g − gsib) is random, but when y is regressed

on gw controlling for sibling fixed effects z, the coefficient that is estimated is

αg =
w′Σ (β − βsib)

w′Σw
,

where βsib denotes the sibling genetic effect. Since the identifying variation is the
individual’s PGI relative to her sibling’s, the coefficient is picking up both the
effect of the individual having a higher PGI and the effect of the sibling having a
lower PGI.
Analogous to the discussion in Section III.C, when sibling genotypes are ob-
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served but parental genotypes are not, Young et al. (2022) shows that controlling
for sibling fixed effects is dominated by imputing parental genotypes and con-
trolling for the sum of parental PGIs (constructed from the imputed data), with
random effects to control for family-specific means. This strategy generates a
consistent and unbiased estimator of Equation (18) with greater precision than
the sibling fixed-effects specification. With imperfect controls z, such as princi-
pal components of the genetic data, the parameter being estimated is Equation
(18), but with omitted-variables bias due to uncorrected-for gene-environment
correlation, as well as bias due to assortative mating.

E Correcting for PGI Measurement Error in Applications

Typically, in a social-science application analyzing some PGI, it is not the PGI’s
effect that researchers are actually interested in. Instead, the PGI is used as an
empirical proxy for the genetic influences on a phenotype. As we showed in
Section IV.A, the PGI can be interpreted as a measure of the optimal predictor
(and of the additive SNP factor when the GWAS has sufficient controls), but
with measurement error that is (approximately) classical. The errors-in-variables
bias that results from classical measurement error can distort the conclusions
drawn from a statistical analysis in a number of ways (e.g., Gillen, Snowberg and
Yariv, 2019). Moreover, different papers use PGIs based on different GWASs or
constructed using different methods, so the amount of measurement error varies.
All of these considerations bolster the case for facilitating comparability across
studies by correcting for errors-in-variables bias in applications.
Two approaches have been developed to implement such a correction. First,

DiPrete, Burik and Koellinger (2018) proposed an instrumental-variables ap-
proach. Two independent subsamples of the GWAS are used to construct two
sets of PGI weights. These are then used to construct two PGIs in the prediction
sample, and they are used to instrument for each other (as in Gillen, Snowberg
and Yariv, 2019).
The other approach is a regression-disattenuation estimator, which uses exter-

nal information on the amount of measurement error (Becker et al. (2021)). The
core idea is as follows. Suppose a researcher is interested in the regression of some
outcome y on some standardized, optimal predictor ğ/std (ğ) (which could be the
standardized, optimal predictor for a different phenotype than y). Although the
optimal predictor is unobserved, the researcher has access to a PGI, ĝ, and runs
the regression of y on ĝ. Recall from Section IV.A above that ĝ = ğ+e

std(ğ+e) , where

e is (approximately) classical measurement error. A standard calculation shows
that the regression coefficient of interest is

b ≡ Cov (ğ/std (ğ) , y)

Var (ğ/std (ğ))
=

Cov (ğ, y)

std (ğ)
,
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but the estimated coefficient is

Cov (ĝ, y)

Var (ĝ)
= Cov (ĝ, y)

=
1

std (ğ + e)
Cov (ğ, y) =

std (ğ)

std (ğ + e)
b =

1

ρ
b,

where ρ ≡ std(ğ+e)
std(ğ) .20 The expression is the well-known formula for attenuation

bias for univariate regression, modified to reflect the fact that the PGI is stan-
dardized in our setting. An estimate of ρ is then used to calculate b.
The approach proposed by Becker et al. (2021) exploits the relationship

ρ2 =
Var (ğ + e)

Var (ğ)
=

Cov (ğ, y)2 / [Var (ğ)Var (y)]

Cov (ğ, y)2 / [Var (ğ + e)Var (y)]
,

=
Cov (ğ, y)2 / [Var (ğ)Var (y)]

Cov (ĝ, y)2 / [Var (ĝ)Var (y)]
=

h̆2

R2
,

where ρ2 > 1 because the PGI’s actual predictive power, R2, is smaller than
the optimal predictive power, h̆2, when the PGI weights are estimated in a finite
GWAS sample. The amount of measurement error determines how much the
PGI’s predictive power falls short of the optimal predictive power. R2 can be
estimated directly in the prediction sample at hand. The optimal predictive
power h̆2 can also be estimated in the prediction sample if the sample size is large
enough for a precise estimate; more commonly, an external estimate can be used.
Becker et al. extend this approach to obtain an analytic correction for the

errors-in-variables bias in a multivariate regression of an outcome on a PGI, a
set of non-genetic covariates, and possibly their interactions. They show the
correction can be implemented using an estimated or assumed value of optimal
predictive power in the prediction sample, together with quantities that are con-
sistently estimated in the prediction sample. Becker et al. also derive analytic
standard errors for the regression coefficients. Despite the fact that the stan-
dard errors ignore uncertainty in the optimal predictive power estimates, Sanz-de
Galdeano and Terskaya (Forthcoming) (their Appendix F.5) show that standard
errors will often be conservative (i.e., biased upward).
Relative to the regression-disattenuation estimator, the major advantage of

the instrumental-variables estimator is that it does not require an estimate of
the optimal predictive power. This advantage may be a particularly relevant
for phenotypes with substantial assortative mating, which biases estimates of
optimal predictive power. The major disadvantage of the instrumental-variables
estimator is a loss of statistical power from having to split the GWAS sample.

20Note that our notation here, and in particular our definition of ρ, differs from that in Becker et al.
(2021) because Becker et al. analyze the additive SNP factor in standardized units.
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van Kippersluis et al. (2023) provide a detailed analysis and comparison of the
two approaches.
Corrections for errors-in-variables bias require some additional assumptions

when the regressors include multiple PGIs. Sanz-de Galdeano and Terskaya
(Forthcoming) extend the Becker et al. approach to the important case of con-
trolling for the parental PGIs and/or sibling PGI, to allow for estimating the
causal effect of the optimal predictor. When controlling for the parental PGIs,
an additional assumption is needed about the parent-child correlation of the opti-
mal predictor. When controlling for the sibling PGI, an additional assumption is
needed about the sibling correlation of the optimal predictor. Under random mat-
ing, these parameters are known and equal to 1/

√
2 and 1/2, respectively (Trejo

and Domingue, 2018), but under assortative mating, the parameters depend on
the degree of assortative mating.
We have focused here on analyses using PGIs to draw conclusions about what

the results would have been if the optimal predictor were analyzed in place of
the PGI. Rightly or wrongly, researchers typically interpret their results as if
the PGI were an unbiased estimate of the additive SNP factor. Granting this
premise (which is fully justified only if the GWAS controls were sufficient), a
natural question is whether we could, by correcting for additional measurement
error, draw conclusions about what the results would have been if the additive
genetic factor (or even the genetic factor) had been analyzed. If so, this would
generally be more interesting, since the relevant theory-driven hypotheses pertain
to the effects of genetic variants overall, not merely those that can currently be
measured. Moreover, it is feasible in many cases to correct for additional mea-
surement error; the regression-disattenuation estimator above could be used with
a twin-based heritability estimate in place of a SNP heritability estimate. The
reason we have not focused on such an adjustment is that it is not fully justi-
fied: if we conceptualize the PGI as a standardized, noisy measure of the additive
genetic factor, the measurement error is unlikely to be classical for two reasons.
First, biases in population GWAS estimates are often correlated with the causal
effect effects. Second, even if unbiased estimates were used, we do not have infor-
mation about the genetic variants that are unmeasured and not highly correlated
with measured SNPs. For example, if unmeasured rare variants—which have low
correlations with measured SNPs—tend to affect the phenotype negatively and
happen to be negatively correlated with the PGI, then the measurement error in
the PGI would be correlated with the PGI. For the measurement-error correction
to give the right answer, we would need to assume that the difference between the
additive genetic factor and the additive SNP factor is uncorrelated with the PGI.
While we believe it may be interesting to apply the correction also in such sce-
narios, it would be important to be transparent about the fact that an additional
assumption is being imposed.
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F PGIs As Social-Science Variables

Since PGIs are, at best, noisy measures of the additive SNP factor, and the
additive SNP factor proxies for the additive genetic factor, all of the interpreta-
tional caveats from Section II.D apply to PGIs. In particular, the effects of a PGI
will typically reflect a mix of all the mechanisms through which genetic variants
(that are correlated with measured SNPs) operate. For many phenotypes, these
mechanisms will include endogenous social and behavioral responses to pheno-
types proximally affected by the PGI. Just as heritabilities are not measures of
innateness, it is a mistake to assume that PGIs exclusively capture purely bio-
logical or innate characteristics. We caution against using labels such as “genetic
endowment” to describe PGIs for the same reason that such labels inaccurately
describe the genetic factor.
Some researchers, especially non-economists, have asserted that it is misleading

to describing the effects of a PGI as “causal” because the mechanisms are largely
or entirely unknown. Economists are well situated to provide a useful perspec-
tive, since economists often study the causal effects of environmental factors (and
interventions) for which we have only a partial understanding of mechanisms. Of
course, for many purposes, it is important to understand the mechanisms under-
lying a causal effect. That is why, after credibly identifying a causal effect, many
economics papers go on to study potential mechanisms (often with evidence that
is less air-tight than the identification of the causal effect).
As a variable that operates through many mechanisms, a PGI is like many

other variables that social scientists study and incorporate into their theories.
For example, an individual’s biological sex has biological effects, such as body
size and hormone levels, but it also affects an individual’s behavior and outcomes
through the reactions that other people have to the individual. While researchers
need to bear these different possible mechanisms in mind when studying biological
sex, biological sex is nonetheless an important and useful variable in social-science
research. We believe PGIs can be important and useful in a similar way.

V Applications

In this section, we describe several applications of genetic data in economics.
We have tried to cover a broad range, but our judgment of which applications
to review is necessarily somewhat subjective and leaves out a number of valuable
contributions, including, among others, Papageorge and Thom (2020), Barth,
Papageorge and Thom (2020), and Arold, Hufe and Stoeckli (2022).

A Polygenic Indexes for Balance Tests and as Covariates

PGIs can be valuable even for research that is not directly related to genet-
ics. For example, PGIs can be particularly useful variables for balance tests in
RCTs and quasi-experiments, for three reasons. First, because the PGI is fixed at
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conception, it cannot be affected by the treatment. Second, the cost of genotyp-
ing participants may be small relative to the cost of collecting some alternative
measures used in balance tests (e.g., scores from long cognitive tests). Finally,
once participants have been genotyped, it is possible to construct PGIs for mul-
tiple phenotypes and genetic principal components, which can all be used for (in
some cases, uncorrelated) balance tests. The only example we are aware of in
the literature is Barcellos, Carvalho and Turley (2018) (their Appendix B), who
used PGIs for educational attainment and BMI, as well as 15 genetic principal
components, as variables for a balance test for a regression discontinuity design
(discussed below).
For the same reasons, PGIs may also be valuable control variables. For example,

a PGI could be used to (partly) control for omitted variable bias in observational
studies where the treatment of interest is correlated with genetic factors, e.g.,
studies of the association between parental behaviors and children’s outcomes
(e.g., Jami et al., 2021). Alternatively, even in randomized controlled trials
(RCTs), which yield unbiased treatment effects without any control variables by
virtue of randomizing the treatment, PGIs can be useful as controls that absorb
residual variance, thereby making the treatment effect estimates more precise
(Rietveld et al., 2013; Benjamin et al., 2012; Cesarini and Visscher, 2017).21

Rietveld et al. (2013) calculated the gains in effective sample size that could
be obtained by controlling for PGIs in a simple RCT with two conditions. For
example, if the set of baseline controls, absent the PGI, explain 20% of the vari-
ance in the outcome, they find that adding a PGI with an incremental R2 of 15%
would increase power equivalent to increasing the RCT sample size by 19%.
To date, only a handful of studies have used PGIs as control variables (e.g.,

Barcellos, Carvalho and Turley, 2018; Davies et al., 2018), perhaps due to lack of
human capital for incorporating genetic-data collection into existing RCT research
infrastructures. Some investigators may also be apprehensive about collecting
sensitive data that is unrelated to the goals of the relevant RCTs. However, the
cost-benefit profile of controlling for PGIs will only grow as genotyping becomes
cheaper and PGIs become more predictive and available for more phenotypes.

B Heterogeneous Treatment Effects of Education on Health

Genetics provides natural dimensions of heterogeneity for studying heteroge-
neous treatment effects. One example is Barcellos, Carvalho and Turley (2018),
who study heterogeneous treatment effects of education on health. For quasi-
experimental variation in education, they use a regression-discontinuity design,
exploiting the 1972 Raising Of School-Leaving Act, which raised the compulsory
schooling age from 15 to 16. Their outcome variables are binarized measures of

21Controlling for PGIs can similarly increase the power of GWASs; see Bennett et al. (2021), Campos
et al. (2023) and Jurgens et al. (2023). Relatedly, PGIs can be used for stratified sampling in an RCT,
selecting extreme individuals to increase power for a given sample size (Fahed, Philippakis and Khera,
2022).
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body size/obesity, lung health, and blood pressure. They use data from 253,377
individuals in the UK Biobank.
In a different dataset from the UK, Clark and Royer (2013) exploit the same

law and find no evidence of effects of education on health. With their much larger
dataset enabling more precise estimates, Barcellos et al. find that education re-
duces the risk of obesity (-6.0 percentage points, SE: 3.5, baseline risk: 21.5%)
and lung disease (-8.9 percentage points, SE: 4.8, baseline risk: 28.7%) but in-
creases the risk of hypertension (10.6 percentage points, SE: 5.1, baseline risk:
61.1%).
They then examine how the treatment effects vary with a PGI for BMI and

find evidence for substantial heterogeneity in the effect of education on obesity.
For example, an additional year of schooling reduced the risk of obesity by only
0.3 percentage points for those with a BMI PGI one standard deviation below the
mean but reduced it by 11.7 percentage points for those one standard deviation
above. This heterogeneity implies that the compulsory year of education reduced
the health gap between high- and low-risk individuals, as measured by the BMI
PGI.

C Assortative Mating

Assortative mating is of particular interest to economists due to its implications
for societal inequalities. Because parents pass on their genes to their offspring
in addition to their other forms of capital, genetics is potentially an important
mechanism by which assortative mating affects inequalities. Even aside from this,
genetic data provide promising new empirical tools to study assortative mating
(kinship data can be similarly useful; see, e.g., Collado, Ortuno-Ortin and Stuhler,
2023).
Relative to using directly measured phenotypes, one key advantage of genetic

data is that genotypes are fixed at conception and not influenced by the mate
selection process. Thus, a positive correlation of a PGI for BMI between spouses
must be due to factors that were in place prior to the match. By contrast, a
positive phenotypic correlation of, say, spousal BMI could arise for a number of
reasons, including assortative mating but also correlated spousal environments
before or after matching.
One example of work that exploits this basic insight is Conley et al. (2016).

Using data from the Health and Retirement study, they measure the phenotypic
spousal correlation for education, height, BMI, and depression. They also mea-
sure the spousal correlation for PGIs for these four traits. They find moderate
phenotypic correlations for all four phenotypes (as high as 0.53 for education and
as low as 0.17 for height), but only the PGI correlations for education (0.13, CI:
[.09,.17]) and height (0.30, CI: [0.27,0.34]) are statistically distinguishable from
zero. They acknowledge, however, that the lack of correlations for the BMI and
depression PGIs may be due to measurement error in the PGI, as described in
section IV.E.

56



As another example, Abdellaoui et al. (2022b) consider a model where a person’s
socioeconomic status (SES) and their advantageous genes are assets in the mar-
riage market, causing people to sort on both genes and SES. Such a model induces
a correlation between genes and SES in subsequent generations because both are
transmitted to offspring. To test this model, using the UK Biobank, they mea-
sure whether later-born children—who have lower SES on average than their older
siblings—tend to marry people with lower average educational-attainment PGIs.
They find weak evidence that later birth (and therefore lower expected SES) is
associated with a person’s spouse having a smaller educational-attainment PGI
(-0.031, SE: 0.015 in their strongest specification), though this result is not ro-
bust across all specifications. They conclude that this model may partly explain
long-run inequality.
A second advantage of genetic data is that it can be used to make inferences

about assortment schemes in previous generations of individuals who were not
genotyped. Such inferences are possible because if parents (or earlier ancestors)
sort on a heritable phenotype, then alleles that are associated with increases in
the phenotype will be correlated across the father and mother and thus correlated
within their child’s genome, even if the alleles are on different chromosomes.
Yengo et al. (2018) made this observation and then exploited it to construct an
estimator for the amount of assortative mating in some phenotype: they infer
it from the correlation between a PGI that is constructed only from SNPs on
even-numbered chromosomes and another constructed only from SNPs on odd-
numbered chromosomes. Consistent with the results of Conley et al. (2016),
which are based on observed spouse pairs, they find positive cross-chromosome
correlation for height and educational attainment.
While we anticipate that approaches that exploit genetic data will prove useful

for studying assortative mating even when researchers are primarily interested in
sorting on phenotypes, it is important to keep in mind that the relationship be-
tween mates’ genotypic correlation and mates’ phenotypic correlation is nuanced.
For example, a one-time, permanent increase in the amount of phenotypic as-
sortment on height would generate a gradual increase in the correlation between
mates’ PGIs for height over several generations, asymptoting toward a higher
level.

D Parental Investment and Sibling Differences

Sanz-de Galdeano and Terskaya (Forthcoming) use a PGI for EA to address
the question of whether parental investments compensate for or reinforce chil-
drens’ ability differences. Theoretical analyses by Becker and Tomes (1976) and
Behrman, Pollak and Taubman (1982) highlight two influences on parental in-
vestment decisions: parental concerns for efficiency versus equality, and the cost
of investment. A body of prior work relied on measures of ability, such as cog-
nitive test scores, that are themselves influenced by parental investments. Using
a PGI instead has two key advantages: it is fixed at conception, prior to any
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(even in-utero) parental investments, and it is randomly assigned, conditional on
parental PGIs.
Sanz-de-Galdeano and Terskaya use data from 604 genotyped sibling pairs with

European genetic ancestries in the National Longitudinal Adolescent to Adult
Health Study (Add Health). Using the method developed by Young et al. (2022)
(see Section III.B), they impute the mean parental genotype within each sibling
pair and use it as a control variable in the analysis. Based on a survey conducted
when the children were aged 12-20 that asked about how often the child engaged
in various activities with the parents, Sanz-de-Galdeano and Terskaya (Forthcom-
ing) construct an index of parental investment for each child. The paper’s main
regression specification is

(20) I0 = β0 + β1 (PGI0 − PGIy) + β2PGI0 + β3PGIpar +Controls + u,

where the unit of analysis is the sibling pair, I0 is the index of parental investment
in the older sibling, PGI0 and PGIy are the older and younger sibling’s respec-
tive PGIs, PGIpar is the (imputed) parental mean PGI, and u is an error term.
Because PGI0 and (PGI0 − PGIy) are conditionally random given PGIpar, the co-
efficients β1 and β2 have causal interpretations. Moreover, in a structural model,
Sanz-de-Galdeano and Terskaya (Forthcoming) show that β1 captures a parental
preference parameter for inequality aversion versus efficiency, and β2 captures
the cost of investment (the net effect of the child’s PGI on parental investment
is β1 + β2). As discussed in Section IV.E, estimating regression Equation (20)
with the observed PGIs would generate coefficients that suffer from substantial
errors-in-variables bias. Instead, Sanz-de-Galdeano and Terskaya develop and
apply an extension of Becker et al.’s (2021) measurement-error correction, which
simultaneously corrects for the measurement error in all three PGI terms.
In their full-sample analysis including all their control variables and after cor-

recting for the measurement errors in the PGIs, Sanz-de-Galdeano and Terskaya
estimate β̂1 = −0.207 (S.E. = 0.102), β̂2 = 0.167 (S.E. = 0.140), and β̂3 = −0.029
(S.E. = 0.161). The main result (albeit statistically weak) is the negative esti-
mate of the parameter β1, which suggests parents are inequality-averse over their
childrens’ human capital. The point estimate of β2 is positive, which would im-
ply parents that invest more when their children have higher ability, but the 95%
confidence interval is large and includes zero. The estimate of β3 is difficult to in-
terpret because it picks up the effects of non-genetic variables that are correlated
with PGIpar.
Sanz-de-Galdeano and Terskaya’s estimates likely understate both the economic

and statistical significance of childrens’ genes for parental investment behavior.
Statistically, as noted in Section IV.E, Sanz-de-Galdeano and Terskaya show that
the measurement-error correction generates standard errors that are biased up-
ward. Economically, relative to the theoretical concept of “initial ability” that
the PGI proxies for, the PGIs contain additional measurement error that is not
accounted for. For example, the theoretical concept corresponds to the “direct-
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effect PGI” that could be produced from a family-based GWAS, rather than the
PGI they use, which comes from a population GWAS (see Section III.G). The
theoretical concept also would include the effects of all genetic variants, not just
those captured by SNP array data (see Section II.I). Although these sources of
measurement error are neither classical nor mean-zero, their primary effect on the
main results is likely to be an attenuation bias.

E The Dynamics of Parental Investment and Child Cognitive Skills

Houmark, Ronda and Rosholm (2024) use a PGI for EA to model and esti-
mate the joint evolution of cognitive skills and parental investments throughout
early childhood. The paper builds on existing models of childhood skill formation
(Cunha and Heckman, 2007, 2008). Like Sanz-de Galdeano and Terskaya (Forth-
coming) discussed above, using a PGI as a measure of initial ability has the
advantages that it is fixed prior to any parental investments, and it is randomly
assigned, conditional on parental PGIs.
Houmark, Ronda and Rosholm (2024) use data from 4,510 genotyped children

and their parents (with European genetic ancestries) in the Avon Longitudinal
Study of Parents and Children, a birth cohort study based in Bristol, UK. Genetic
data from both parents are available for 1,267 children. For other children, the
authors use Young et al.’s (2022) method (see Section III.B) to impute the missing
parent’s genotype. Based on questionnaires sent regularly to the child’s primary
caregiver starting prior to birth, the authors construct measures of children’s
skills (e.g., ability to process new information and learn abstract concepts) and
parental investments (the frequency with which the parent does certain activities
with the child).
They model a child’s initial cognitive skills, θi0, as a log-linear function of

the child’s, the mother’s, and the father’s additive SNP factors for educational

attainment, Gi, G
m
i , and Gf

i , as well as a vector of controls, Xi0, that include sex
and 15 genetic PCs:

(21) ln (θi0) = α1Gi + α2G
m
i + α1G

f
i + αx0Xi0 + εi0.

In their preferred specification, the production function for cognitive skills in
period t follows a translog specification:

ln (θit) = ln (At) + δ1t ln (θit) + δ2t ln (Iit)

+δ3t ln (θit)× ln (Iit) + δ4tGi + δ5tG
m
i + δ6tG

f
i + δxtXit + εit,(22)

where ln (At) is total factor productivity and Iit is parental investment in period
t. Parental investment behavior in period t is specified as a function of the child’s
cognitive skills in period t, the child’s and parents’ additive SNP factors, and
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controls:

(23) ln (Iit) = γ1t ln (θit) + γ2tGi + γ3tG
m
i + γ4tG

f
i + γxtXi0 + ηit.

These structural equations are supplemented by a set of measurement equations
that link latent skills, θit, and latent parental investments, Iit, to the observed
measures of skills and investments in each period (as in Agostinelli and Wiswall,
2016; Cunha and Heckman, 2008). Identifying the latent factors requires standard
but strong i.i.d. assumptions on the measurement errors of the observed measures.
Houmark et al. similarly write down a measurement equation linking the (latent)
additive SNP factor to the (measured) EA PGI, and in this way, they adjust for
the measurement error in the EA PGI. Once the latent factors are estimated,
Equations (21)-(23) are estimated by OLS, and the standard errors are obtained
by bootstrapping.
The main results are about the effects of children’s genotypes. These estimated

effects have a causal interpretation due to the conditional random assignment of

Gi, given Gm
i and Gf

i . The paper finds that genetic influences affect cognitive
skills even for very young children, ages 0-2, and that the genetic influence on
a child’s cognitive skills is increasing with age. Previous work also reports in-
creasing genetic influences with age (e.g., Bouchard, 2013; Belsky et al., 2016),
but an alternative interpretation of the earlier findings—ruled out here—was that
cognitive skills at younger ages are measured with more error. The paper also
finds that children with higher additive SNP factors behave in ways that cause
their parents to invest more in them. The parental investment responses magnify
initial differences between children.
The other estimated effects should be interpreted more cautiously because they

rely more heavily on the assumptions of the structural and measurement models,
but they paint a rich picture of the dynamics of parental investment and chil-
drens’ cognitive skill accumulation. For example, the paper finds that parents
with higher additive SNP factors invest more in their children (holding fixed the
child’s additive SNP factor) and that the returns to parental investments are
substantially overestimated if genetic measures are omitted from the analysis.

F Mendelian Randomization

The first proposed use of genetic data in economics was as instrumental vari-
ables (Norton and Han, 2008; Ding et al., 2009; Fletcher and Lehrer, 2009; von
Hinke Kessler Scholder et al., 2011). These early studies in economics used as
instruments “candidate genes,” whose reported associations with behavioral phe-
notypes subsequently came to be viewed with skepticism (see, e.g., Beauchamp
et al., 2011a; Benjamin et al., 2012). In epidemiology, the strategy of using ge-
netic variants as instruments is called Mendelian randomization (MR), which is
the term we will use here.
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The initial idea of MR appears to be due to Katan (1986), who proposed study-
ing the causal impact of serum cholesterol on cancer risk by examining the asso-
ciation between the gene APOE (which affects serum cholesterol) and cancer. It
was subsequently recognized that MR is a case of instrumental-variables regres-
sion (e.g., Thomas and Conti, 2004). There was already a substantial amount of
MR research carried out in epidemiology by 2000 (Davey Smith and Ebrahim,
2003). MR has continued to grow in popularity in genetic epidemiology and med-
ical genetics and now comprises a enormous literature. For a recent overview, see
Sanderson et al. (2022).
There are many challenges to credibly using genetic variants as instruments,

mainly because it is difficult to rule out violations of the exclusion restriction
(e.g., Conley, 2009; Cawley, Han and Norton, 2011; McMartin and Conley, 2020).
For one thing, genetic variants typically matter in multiple biological pathways,
many of which are not fully understood, so the exclusion restriction will rarely
be satisfied exactly. For another thing, genetic variants are typically in LD with
many other variants (including distant variants, due to population structure and
assortative mating) that could affect the outcome through other pathways. Gene-
environment correlation is another reason the exclusion restriction may be vio-
lated. While controlling for parental genotypes would solve the problems due
to gene-environment correlation, population structure, and assortative mating
(Brumpton et al., 2020), it is rare in practice due to data limitations (exceptions
are Fletcher and Lehrer, 2011; Howe et al., 2022a). In addition to violations of
the exclusion restriction, weak instruments is another potential problem, partic-
ularly when the endogenous regressor is a complex phenotype. Because of these
challenges, there have been few MR studies in economics.
While we view most published MR studies skeptically, there are exceptions. For

example, one arguably persuasive MR study in epidemiology is Millwood et al.
(2019). Prior observational studies of the effect of alcohol on health outcomes had
found a non-monotonic relationship, with light drinking (especially of red wine)
associated with better health than abstinence but heavy drinking associated with
worse health. However, the association between abstinence and worse health could
be due to reverse causation (unhealthy individuals drink less) or confounds. To
obtain causal evidence, Millwood et al. use as instruments two SNPs that are
well established to be associated with alcohol consumption due to their role in
alcohol metabolism. The paper analyzes ∼160,000 Han Chinese individuals in the
China Kadoorie Biobank. The more powerful of the two instruments (rs671 in
the alcohol dehydrogenase gene ALDH2 ) commonly varies among Han Chinese,
with one of its alleles causing people who drink alcohol to experience discomfort.
The paper estimates a monotonic effect of alcohol consumption on cardiovascular
health outcomes, with any amount of alcohol consumption worse than no alcohol
consumption. To address concerns about violation of the exclusion restriction,
Millwood et al. conduct a placebo test using the women in the sample, exploiting
the fact that women in most regions of China largely abstain from alcohol. If
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the effects of the genetic variants on health were due to correlation with other
variants or gene-environment correlation, then we would expect an association
between the genetic variants and health even in this subsample of non-drinkers.
However, the paper finds no association between the genetic variants and health
among women, only among men.
Economists tend to be very skeptical about instrumental variables except when

violations of the exclusion restriction can be fully ruled out (see, e.g., Oster’s
(2022) critique of Millwood et al. and another, related study). In response,
defenders of MR studies often argue that when randomized experiments are in-
feasible, as is common in epidemiology, MR studies are the best tool available
and provide more persuasive evidence than observational studies.
For making the standard instrumental-variables assumptions most plausible,

the best-case scenario is to use as an instrument a genetic variant with a rel-
atively large effect size that operates through a known biological mechanism.
Genetic variants involved in alcohol and nicotine metabolism are among the most
promising for social-science applications and could be used to study effects of al-
cohol and cigarette consumption, respectively. However, even in these cases, the
variants have other effects, besides affecting alcohol and nicotine metabolism. For
example, the SNP rs1051730 tags the CHRNA3 gene that is often used in MR
studies of the effects of smoking (e.g., Skov-Ettrup et al., 2017). This gene codes
for neuronal acetylcoline receptors, which nicotine binds to, but acetylcoline is a
neurotransmitter that has a wide variety of functions. Placebo tests like in the
above example will therefore generally be necessary for MR studies to be most
persuasive.
In the epidemiology literature, the growing recent popularity of MR studies is

due to the explosive growth of genetic associations identified by GWAS (Sekula
et al., 2016). These studies look different from instrumental-variables studies in
economics for two reasons. First, instead of the usual, single-sample instrumental-
variables estimator, they use a two-sample instrumental-variables estimator: the
effect of the instrument on the outcome is divided by the effect of the instrument
on the endogenous regressor (Angrist and Krueger, 1992). Estimates of these ef-
fects are obtained from the summary statistics of two different published GWASs.
For example, in an MR study of the effect of education on coronary heart disease
(Tillmann et al., 2017), for each SNP used as an instrument, the coefficient from a
GWAS of coronary heart disease was divided by the the coefficient from a GWAS
of educational attainment. Second, these studies typically use a large number of
instruments, for example, all of the genome-wide-significant SNPs in the GWAS
of the outcome. Unlike in economics, where multiple instruments are used to test
overidentifying restrictions or to identify different local average treatment effects,
MR studies typically use multiple instruments in order to obtain causal estimates
that are valid under assumptions that—while still strong—are weaker than the
exclusion restriction. A variety of estimators have been developed for this pur-
pose (e.g., Timpson et al., 2011; O’Connor and Price, 2018; Burgess et al., 2019;
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Burgess et al., 2020; Bowden, Davey Smith and Burgess, 2015; Kang et al., 2016).
Perhaps because of our jaded perspective as economists on instrumental variables,
we are concerned by the proliferation of MR studies that draw causal conclusions
whose validity hinges on assumptions that are rarely tested adequately.

VI Future Directions and Concluding Remarks

Over the last ten years, with the advent of GWAS for social and behavioral
phenotypes, social-science genomics has come of age. PGIs are beginning to be
used in social-science applications. In some cases, PGIs will be useful as control
variables to increase statistical power (e.g., in randomized experiments) or to
address confounds, for example, when studying the health-education gradent. In
other cases, equipped with the PGI as a measure of genetic influences, economists
and other social scientists will have greater leverage in addressing classic topics,
such as the determinants and impacts of parental and school investments (e.g.,
Sanz-de Galdeano and Terskaya, Forthcoming; Houmark, Ronda and Rosholm,
2024), labor market returns to human capital (e.g., Papageorge and Thom, 2020),
intergenerational transmission of skills (e.g., Barth, Papageorge and Thom, 2020),
the determinants and consequences of migration (e.g., Abdellaoui et al., 2019),
and assortative matching in marriage markets (e.g., Abdellaoui et al., 2022b).
Progress on some of these topics is already underway, as illustrated in Section V.
While some of these applications will involve economists relatively straight-

forwardly importing PGIs from genetics into economics, in other applications,
economists will need to build structural models to account for endogenous be-
havioral and social responses to genotypes. In such applications, economists will
contribute to geneticists’ understanding of the mechanisms through which PGIs
matter. Sections V.D and V.E showcased some early examples.
To facilitate certain applications, we anticipate that social scientists will in-

fluence the genetics research that is conducted. This has already happened in
the case of GWASs for social and behavioral phenotypes, which have been col-
laborations between social scientists and geneticists, driven (at least initially) by
social scientists’ interests in the phenotypes. Once genotyped samples become
large enough for adequate power, we anticipate that social scientists will want
to conduct GWASs in samples that contain randomized experiments or quasi-
experiments (see also Schmitz et al., 2021). For example, in a sample where the
curriculum is randomly assigned, economists may be interested in a GWAS of
educational attainment in which the regressors include SNP-by-treatment inter-
action. A PGI can then be constructed from the coefficients on the interaction.
This PGI would capture genetic influences on the effectiveness of the treatment.
When based on a sufficiently well powered GWAS, such a PGI would be a better
tool for targeting the curricular intervention than the current PGI for educational
attainment.
We anticipate that four ongoing, related developments in statistical genetics

will facilitate applications of genetic data in the social sciences. First is simply
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more and larger GWAS samples. Larger samples will continue to enable better
powered studies of all kinds, such as studies of gene-environment interactions, as
well as more predictive PGIs for a larger set of phenotypes. In addition, at some
point, larger samples will enable researchers to construct PGIs that capture some
of the non-additive genetic variance, allowing the predictive power of a PGI to
exceed the phenotype’s SNP heritability. While we expect dominance variance to
be negligible for most social and behavior phenotypes and epistatic variance to be
small (see Section II.C), epistatic variance may well add a few percentage points
of predictive power. Although the combinatorial explosion of potential gene-gene
interactions is a challenge for efforts to credibly identify them, machine-learning
methods should be able to capture some of their predictive power.
Second, the momentum in the field strongly favors family-based studies and

methods. As larger genotyped family samples become available, researchers will
be able to more precisely estimate (causal) self genetic effects, parental genetic
effects, sibling genetic effects, and genetic effects of other family members. In
regressions that control for parental PGIs, family-based PGIs will also overtake
population PGIs in predictive power, enabling applications to be better powered
and making the weights on genetic variants implicit in the “causal effect of the
PGI” closer to the additive SNP factor weights.
Third, generating large samples with individual-level genetic data from all ma-

jor underrepresented genetic ancestries is a high priority. This will likely have
many benefits for medical genetics, including improving leverage for identifying
causal genetic variants. For the social sciences, the main benefit will be PGIs
that are more predictive for individuals with non-European genetic ancestries.
Fourth, genotyping will become denser, implying that the measured SNPs will

capture a greater fraction of all of the genetic variation. Indeed, as the cost of
sequencing continues to plummet, sequencing may soon overtake genotyping as
researchers’ preferred way of measuring genetic variation. As mentioned in Sec-
tion I, sequencing can measure rare SNPs and non-SNP types of genetic variation
much more accurately than genotyping and thus enables the discovery of very rare
variants with large effects, e.g., on intellectual disabilities (e.g., Chen et al., 2023),
that evade detection in association studies limited to common (mostly SNP) vari-
ants. Thus, due to sequencing, we will eventually have a much better catalog of
the genes that, when disrupted, have a large impact on phenotypes relevant to
the social sciences. We will need to rely less on imputation of unmeasured genetic
variants and will therefore be able to better “fine map” causal variants, i.e., iden-
tify which of several mutually correlated genetic variants are causally responsible
for their association with a phenotype. We expect that the main benefit of denser
genotype measurement for social science will be the improved predictive power
of PGIs. In the limit where a PGI includes all genetic variants, the PGI can be
interpreted as a noisy measure of the additive genetic factor.
More so than in economics, progress in genetics has been propelled by tech-

nological advances in measurement that show no sign of slowing down. The
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nearly 15 years since the last time a review of “genoeconomics” has been written
(Beauchamp et al., 2011a; Benjamin et al., 2012) is an eternity in terms of the
pace of genetics research. Although the coming 15 years may not produce trans-
formational changes on par with those of the past decade and a half—a re-shaping
of social-science genomics with GWAS and the resulting PGIs—there will surely
be both progress and challenges that we cannot currently imagine.
We conclude by highlighting perhaps the most important ongoing challenge:

conducting, interpreting, and communicating research at the intersection of genet-
ics and social science responsibly. While these obligations apply to all researchers,
researchers in social-science genomics bear additional responsibilities in light of
how difficult it is to correctly interpret genetic associations—as highlighted by
the extensive discussion of interpretation throughout this review—as well as the
enduring legacy of eugenics (Rutherford, 2022). While far from sufficient, termi-
nology can help to some degree. Researchers should be cognizant of the potential
social harms of, and be especially careful about conducting and communicat-
ing, research that could be (mis)understood as comparing ethnic, racial, or other
groups on socially valued phenotypes, such as cognitive performance or income.
Given how easy it is to slip into genetic determinism, we believe it is helpful to
continually remind readers of research papers that the effects of individual genetic
variants are small (e.g., Chabris et al., 2015), can operate through environmental
pathways (Jencks, 1980), and have no obvious bearing on the effectiveness of in-
terventions (Goldberger, 1979). We believe it is useful to write a Frequently Asked
Questions (FAQs) document along with a paper to explain to journalists and non-
experts what the research does and does not find and to carefully address any
ethical or policy questions raised by the research. Indeed, writing such FAQs has
become standard practice in social-science genomics (Martschenko et al., 2021).
We recommend a report published by the Hastings Center, a bioethics think tank
(Meyer et al., 2023a), for helpful discussion of these and other best practices, as
well as ethical issues related to social-science genomics more broadly.
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I Local Average Treatment Effect (LATE)

Here, we show that estimates from specifications that include controls for
parental genotypes have a LATE interpretation. For expositional ease, we con-
sider the single-locus case, but the results below generalize to the multi-locus
case. Consider a model where the effect of a SNP on a person varies by person,
such that

yi = xiβi + ziγi + ϵi,

where yi is the phenotype, xi is the genotype, βi is the causal effect of that SNP
for person i, zi is the average parental genotype, γi is the coefficient on parental
genotypes for person i, and ϵi is the residual. Due to Mendelian segregation, we
can decompose a person’s genotype into

xi = zi + xr,i

where xr,i is the random component of person i’s genotype.
We are interested in the coefficient on the child’s genotype from an OLS re-

gression of yi onto xi and zi in some population. By the Frisch-Waugh-Lovell
theorem (Lovell, 1963), this can be obtained by regressing xi onto zi, regressing
yi onto zi, and then regressing the first set of residuals on the second set. We first
calculate the coefficient from a regression of xi onto zi, giving

Cov (xi, zi)

Var (zi)
=

Cov (zi + xr,i, zi)

Var (zi)

=
Var (zi) + Cov (xr,i, zi)

Var (zi)

=
Var (zi)

Var (zi)

= 1.

The third step follows because xr,i and zi are uncorrelated. Therefore, the residual
is:

ẋi = xi − zi

= zi + xr,i − zi

= xr,i.
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Next we evaluate the regression of yi onto zi:

Cov (yi, zi)

Var (zi)
=

Cov (xiβi + ziγi + ϵi, zi)

Var (zi)

=
Cov [xr,iβi + zi (βi + γi) + ϵi, zi]

Var (zi)

=
Cov (xr,iβi, zi) + Cov [zi (βi + γi) , zi] + Cov (ϵi, zi)

Var (zi)

=
Cov [zi (βi + γi) , zi]

Var (zi)

=

∫
(βi + γi) [zi − E (zi)]

2 dFzi∫
[zi − E (zi)]

2 dFzi

= Ez2 (βi + γi) ,

where Ez2 (βi + γi) is the weighted average of βi + γi, with weights equal to
[zi − E (zi)]

2. Therefore, the residual is:

ẏi = yi − ziEz2 (βi + γi)

= xiβi + ziγi + ϵi − ziEz2 (βi + γi)

= xr,iβi + zi [βi + γi − Ez2 (βi + γi)] + ϵi.

Finally, regressing ẏi onto ẋi gives:

β̂ =
Cov (ẏi, ẋi)

Var (ẋi)

=
Cov (xr,iβi + zi [βi + γi − Ez2 (βi + γi)] + ϵi, xr,i)

Var (xr,i)

=
Cov (xr,iβi, xr,i)

Var (xr,i)

=

∫
βi [xr,i − E (xr,i)]

2 dFxr,i∫
[xr,i − E (xr,i)]

2 dFxr,i

=

∫
βix

2
r,idFxr,i∫

x2r,idFxr,i

So we see that the coefficient on the child’s genotype in a regression of the phe-
notype onto both the child’s and parental genotypes yields a weighted average of
the causal effect of the genotypes, weighted by the squared random component
of a child’s genotype. We can further improve our intuition for this expression
by splitting the sample into three sets, H0, H1, and H2, corresponding to the
individuals who have zero, one, or two heterozygous parents. Notice that if an
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individual has no heterozygous parents, then they will always have a genotype
equal to the mean parental genotype. So x2r,i = 0 for all i. For individuals with

one heterozygous parent, xr,i ∈
{
−1

2 ,
1
2

}
and therefore x2r,i = 1

4 for all i. For
individuals with two heterozygous parents, xr,i ∈ {−1, 0, 1} with probabilities of
1
4 ,

1
2 , and

1
4 for each element, respectively. This means that x2r,i ∈ {0, 1} with a

probability of 1
2 for each state and hence E

(
x2r,i|H2

)
= 1

2 . Thus,

β̂ =

∫
βix

2
r,idFxr,i∫

x2r,idFxr,i

=
Exr,i

(
βix

2
r,i

)
Exr,i

(
x2r,i

)
=

Exr,i

(
βix

2
r,i|H0

)
π0 + Exr,i

(
βix

2
r,i|H1

)
π1 + Exr,i

(
βix

2
r,i|H2

)
π2

Exr,i

(
x2r,i

)
=

Exr,i

(
βi|H1

)
Exr,i

(
x2r,i|H1

)
π1 + Exr,i

(
βi|H2

)
Exr,i

(
x2r,i|H2

)
π2

Exr,i

(
x2r,i

)
=

1
4π1Exr,i

(
βi|H1

)
+ 1

2π2Exr,i

(
βi|H2

)
Exr,i

(
x2r,i

)
=

1
4π1Exr,i

(
βi|H1

)
+ 1

2π2Exr,i

(
βi|H2

)
1
4π1 +

1
2π2

=
π1

π1 + 2π2
Exr,i

(
βi|H1

)
+

2π2
π1 + 2π2

Exr,i

(
βi|H2

)
where π0, π1, and π2 are the fraction of individuals in the population with zero,
one, and two heterozygous parents, respectively.
This expression makes clear a few key points. First, individuals with homozy-

gous parents receive no weight in this regression. So to the degree that individuals
with homozygous parents have systematically different genetic effect sizes, family-
based estimates will not generalize to those individuals. Second, individuals with
two heterozygous parents receive double the weight as those with one heterozy-
gous parent. Third, in genetic studies with diverse-ancestry samples, particular
ancestry groups will get more weight for some genetic variants than others. That
is because certain genotypes will be more common in certain groups. As a re-
sult, even if the samples are relatively balanced between the different populations
represented, populations with genotype frequencies close to one-half will tend to
have relatively more individuals with one or two heterozygous parents, so the
estimated average effect for that genetic variant will give more weight to such
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populations.

II Derivations of Formulae for PGI Predictive Power

Here, we derive analytic formulae for the predictive power of a PGI. To begin,
we provide here the derivation of the main text’s Equation (13), which follows
Daetwyler, Villanueva and Woolliams (2008):

R2 =
[Cov (y, ĝ)]2

Var (y)Var (ĝ)
=

[
Cov

(
y, ğ+e

ρ

)]2
Var (y)

=
[Cov (y, ğ)]2

Var (y) [Var (ğ) + Var (e)]
=

(
[Cov (y, ğ)]2

Var (y)Var (ğ)

)(
Var (ğ)

Var (ğ) + Var (e)

)

=

(
[Cov (y, ğ)]2

Var (y)Var (ğ)

)(
Var (ğ) /Var (y)

Var (ğ) /Var (y) + Var (e) /Var (y)

)

=

(
[Cov (y, ğ)]2

Var (y)Var (ğ)

)(
h̆2

h̆2 +Var (e) /Var (y)

)
= h̆2

(
h̆2

h̆2 +M/N

)
,(24)

where M is a constant and N is the GWAS sample size underlying the PGI
weights. The second equality follows from Var (ĝ) = 1 and main text Equation
(12). The third equality follows from the the approximation Cov (y, e) = 0 dis-
cussed in main text Section IV.A. The second-to-last equality follows from the
definition of the optimal predictor, which implies Cov (y, ğ) = Cov (ğ + ε, ğ) =

Var (ğ), and the definition of optimal predictive power: h̆2 ≡ Var (ğ) /Var (y). As
mentioned in the main text, the last equality follows because Var (e) converges to
zero with the GWAS sample size at rate 1/N .
In the remainder of this appendix, we generalize the results in Daetwyler, Vil-

lanueva and Woolliams (2008) by relaxing two key assumptions. First, following
de Vlaming et al. (2017b), we allow for imperfect genetic correlation and different
optimal predictive powers between the GWAS and prediction samples. Second,
we relax the assumption that the GWAS and prediction samples have a common
LD matrix. Wang et al. (2020) and Ding et al. (2023) also relaxed both assump-
tions but did so in a random-effects framework. Hence, their derivations are valid
given their parametric assumptions on the joint distribution of effect sizes across
the two samples. Like us, Wientjes et al. (2015,2016) relaxed both assumptions
without making parametric assumptions but do not formally define and interpret
all the parameters.22

22For example, Wientjes et al. (2015,2016) introduce a term that they call the “genetic correlation
between populations” but that object is never clearly defined, and does not correspond to any of objects
in our basic framework.
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We begin by establishing some notation. First, let

ypred = x̃predβ̆pred + ε̃pred.

Here, ypred is the phenotype in the prediction sample, x̃pred is the vector of ob-

served SNP genotypes, β̆pred is the vector of optimal predictor weights in the
prediction sample, and ε̃pred is a residual that is uncorrelated with the genotypes.
Next, let

ĝ =
x̃predβ̂GWAS

std
(
x̃predβ̂GWAS

) =
x̃pred

(
β̆GWAS + uGWAS

)
std
(
x̃predβ̂GWAS

)
denote a PGI constructed in the prediction sample using estimates of PGI weights
from the GWAS sample, β̂GWAS , and let uGWAS denote the estimation error
from such a projection in a finite sample. Finally, let Σpred ≡ Var (x̃pred) and
ΣGWAS ≡ Var (x̃GWAS) denote the LD matrices in the prediction and GWAS
populations, respectively. Using this notation, the R2 from a regression of the
phenotype on the PGI in the prediction sample is:

R2 =
[Cov (ypred, ĝ)]

2

Var (ypred)Var (ĝ)

=

[
Cov

(
x̃predβ̆pred + ε̃pred,

x̃pred(β̆GWAS+uGWAS)
std(x̃predβ̂GWAS)

)]2
Var (ypred)Var

(
x̃pred(β̆GWAS+uGWAS)

std(x̃predβ̂GWAS)

)

=

[
Cov

(
x̃predβ̆pred, x̃predβ̆GWAS

)]2
Var (ypred)Var

(
x̃predβ̂GWAS

)
=

Var
(
x̃predβ̆pred

)
Var (ypred)︸ ︷︷ ︸

=h̆2
pred

[
Cov

(
x̃predβ̆pred, x̃predβ̆GWAS

)]2
Var

(
x̃predβ̆pred

)
Var

(
x̃predβ̆GWAS

)
︸ ︷︷ ︸

=r2g

Var
(
x̃predβ̆GWAS

)
Var

(
x̃predβ̂GWAS

) ,

where h̆2pred is the optimal predictive power in the prediction sample. Hence, we
have that:

(25) R2 = h̆2predr
2
g

Var
(
x̃predβ̆GWAS

)
Var

(
x̃predβ̂GWAS

) .
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For some intuition on how to interpret the parameter r2g , consider first the

special case when Σpred = ΣGWAS , β̆GWAS = β̃GWAS , and β̆pred = β̃pred. Then
r2g is the squared correlation between two additive SNP factors, one based on the

GWAS weights (β̃GWAS) and one based on the prediction sample weights (β̃pred),
so rg is an instance of the genetic correlation parameter rxβ defined in Equation

(6). In the more general case when Σpred ̸= ΣGWAS , β̆GWAS ̸= β̃GWAS , and

β̆pred ̸= β̃pred, r
2
g is the correlation between the optimal predictor in the prediction

sample and a PGI in the prediction sample that uses the GWAS-sample optimal
predictor weights.
We proceed with our derivation by rewriting Equation (25) as:

R2 = h̆2predr
2
g

Var
(
x̃predβ̆GWAS

)
Var

(
x̃predβ̆GWAS

)
+Var (x̃preduGWAS)

= h̆2predr
2
g

 Var(x̃predβ̆GWAS)
Var(yGWAS)

Var(x̃predβ̆GWAS)
Var(yGWAS)

+
Var(x̃preduGWAS)

Var(yGWAS)

 .(26)

Next, we consider the common term in the numerator and denominator of the
fraction:

Var
(
x̃predβ̆GWAS

)
Var (yGWAS)

=
β̆′
GWASΣpredβ̆GWAS

Var (yGWAS)

=
β̆′
GWAS (Σpred −ΣGWAS +ΣGWAS) β̆GWAS

Var (yGWAS)

=h̆2GWAS +
β̆′
GWAS (Σpred −ΣGWAS) β̆GWAS

Var (yGWAS)

=h̆2GWAS +
β̆′
GWAS∆Σβ̆GWAS

Var (yGWAS)
(27)

where, in the last step, we substituted in the LD-difference matrix parameter,
defined as ∆Σ ≡ Σpred −ΣGWAS .
Next, note that by the properties of least-squares projection we have:

Var (uGWAS) ≈
Var (yGWAS)

N
Σ−1

GWAS .

This approximation requires that the GWAS association of each SNP be small
such that Var (yGWAS) is approximately equal to the variance of the residual of
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each univariate GWAS regression and that the sample size is large enough that the
GWAS estimates have converged to their asymptotic distribution. Therefore, we
anticipate that this approximation will be extremely good for virtually all PGIs for
complex phenotypes constructed from a large-sample GWAS. Furthermore, x̃pred

and uGWAS are mean-zero and independent. The second term in the denominator
can therefore be expressed as follows:

Var (x̃preduGWAS)

Var (yGWAS)
=

sum [Var (x̃pred) ◦Var (uGWAS)]

Var (yGWAS)

≈
sum

[
Var (x̃pred) ◦ Var(yGWAS)

N Σ−1
GWAS

]
Var (yGWAS)

=
1

N
sum

(
Σpred ◦Σ−1

GWAS

)
,(28)

where ◦ denotes the element-wise multiplication operator and sum (·) denotes the
grand sum (i.e., the sum over all the elements of the matrix). Substituting (27)
and (28) into (26) and rearranging yields the analytic formula for the generalized
Daetwyler projection given in the main text:

(29) R2 = h̆2predr
2
g

 h̆2GWAS +
β̆′
GWAS(∆Σ)β̆GWAS

Var(yGWAS)

h̆2GWAS +
β̆′
GWAS(∆Σ)β̆GWAS

Var(yGWAS)
+

sum
(
Σpred ◦Σ−1

GWAS

)
N

 .

A Remarks on Generalized Formula

For some intuition on the properties of the generalized formula, it is instructive
to consider the special case where the LD matrices in the populations are both
diagonal. Then

Var (x̃preduGWAS)

Var (yGWAS)
≈ 1

N

M∑
j=1

σ2
pred,j

σ2
GWAS,j

.

In what follows, we will treat σ2
pred,j and σ2

GWAS,j as identically distributed ran-

dom variables.23 We consider two cases, one where σ2
pred,j and σ2

GWAS,j are equal

23We believe this assumption is reasonable for PGIs constructed using the Bayesian methods we focus
on in this paper which use all measured SNPs, as long as the main driver of allele frequency differences
between the prediction and GWAS populations is genetic drift. However, this assumption is likely to be
violated for PGIs that are constructed using a “pruning-and-thresholding” approach, in which only a set
of approximately uncorrelated SNPs that meet some statistical-significance threshold in the GWAS are
included in the PGI. Under genetic drift, even though SNP effect sizes are equal across the prediction
and GWAS populations, SNP allele frequencies will randomly differ, and hence σ2

GWAS,j and σ2
pred,j

will randomly differ. Because inclusion in the PGI is conditioned on statistical significance, SNPs with a
high σ2

GWAS,j are more likely to be included in the PGI since those SNPs will have a smaller standard

error. By regression to the mean, σ2
GWAS,j ≥ σ2

pred,j for these SNPs on average, so σ2
GWAS,j and σ2

pred,j

would not be identically distributed.
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and one where they are independent. The first would arise if the GWAS and
prediction populations are the same. The second is an extreme case that may
arise if the two populations had been separated for an arbitrarily long time and
there are no selective forces that cause allele frequencies to be similar.

Under first scenario
(
σ2
GWAS,j = σ2

pred,j

)
, this expression equals:

1

N

M∑
j=1

σ2
pred,j

σ2
GWAS,j

=
1

N

M∑
j=1

σ2
pred,j

σ2
pred,j

=
1

N

M∑
j=1

1 =
M

N
.

This expression is consistent with the analytical results reported in Daetwyler,
Villanueva and Woolliams (2008) and de Vlaming et al. (2017a). To see this, note
that if σ2

pred,j = σ2
GWAS,j , then ∆Σ is a null matrix and rg = rxβ.Therefore,

R2 = h̆2predr
2
xβ

(
h̆2GWAS

h̆2GWAS + M
N

)
,

which is exactly the formula derived by de Vlaming et al. (2017a).
Under the second scenario, the expected value of the Var (x̃preduGWAS) /Var (yGWAS)

term is:

E

 1

N

M∑
j=1

σ2
pred,j

σ2
GWAS,j

 =
1

N

M∑
j=1

E

(
σ2
pred,j

σ2
GWAS,j

)

=
1

N

M∑
j=1

E
(
σ2
pred,j

)
E

(
1

σ2
GWAS,j

)

≥ 1

N

M∑
j=1

E
(
σ2
pred,j

)
E
(
σ2
GWAS,j

)
=

1

N

M∑
j=1

1

=
M

N
.

where the inequality follows from Jensen’s inequality since the function f(x) =
1/x is convex. When the GWAS and prediction samples have different LD struc-
tures, we would expect the Var (x̃preduGWAS) /Var (yGWAS) term to be larger,
reducing the predictive power of the PGI.
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III Causal Interpretation of PGI

Here, we show that in a regression of some phenotype on the child and parental
polygenic indexes, the coefficient associated on the child polygenic index will be
a weighted sum of causal effects of the child genotypes. Let x denote a vector of
genotypes for some person, xm denote the vector of genotypes for the person’s
mother, and xf denote the vector of genotypes of the person’s father. We use xp

to denote the combined genotypes of the parents such that

xp = xm + xf .

To begin, we evaluate the variance-covariance (VCV) matrices for the genotype
vectors. We model the generations in discrete time but otherwise allow for a
flexible model of assortative mating; for example, we do not impose that the
VCV matrices are in equilbrium between the parent’s and child’s generation. To
do this, we split each of the genotype vectors (with elements in {0, 1, 2}) into the
sum of vectors, each with elements in {0, 1}, corresponding to the alleles inherited

from each of their parents. We use x(m), x
(m)
m , and x

(m)
f to denote the maternally

inherited genotypes for the individual, their mother, and their father, respectively.

Similarly, we use x(f), x
(f)
m , and x

(f)
f to denote the respective paternally inherited

genotypes. By definition,

x = x(m) + x(f),

xm = x(m)
m + x(f)

m ,

xf = x
(m)
f + x

(f)
f .

Let Σ ≡ Var
(
x
(m)
m

)
= Var

(
x
(f)
m

)
= Var

(
x
(m)
f

)
= Var

(
x
(f)
f

)
denote the VCV

matrix of the maternally or paternally inherited alleles of the parents. Due
to assortative mating, the genotypes of the mother and father may be corre-

lated. We use A ≡ Cov
(
x
(m)
m ,x

(m)
f

)
= Cov

(
x
(m)
m ,x

(f)
f

)
= Cov

(
x
(f)
m ,x

(m)
f

)
=

Cov
(
x
(f)
m ,x

(f)
f

)
to denote this covariance. Because there may have been assor-

tative mating in the generation of the grandparents (or in previous generations),
the paternally and maternally inherited genotypes within each genotype may also

be correlated. We use B ≡ Cov
(
x
(m)
m ,x

(f)
m

)
= Cov

(
x
(m)
f ,x

(f)
f

)
to denote this

covariance.
We now use this notation to express the VCV matrix for each parent’s geno-
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types. We calculate

Var (xm) = Var
(
x(m)
m

)
+Var

(
x(f)
m

)
+ 2Cov

(
x(m)
m ,x(f)

m

)
= 2Σ+ 2B

= 2 (Σ+B) .

Similarly,
Var (xf ) = 2 (Σ+B) .

Next, we calculate

Cov (xm,xf ) = Cov
(
x(m)
m ,x

(m)
f

)
+Cov

(
x(m)
m ,x

(f)
f

)
+Cov

(
x(f)
m ,x

(m)
f

)
+Cov

(
x(f)
m ,x

(f)
f

)
= 4A.

Using these results,

Var (xp) = Var (xm) + Var (xf ) + 2Cov (xm,xf )

= 2 (Σ+B) + 2 (Σ+B) + 8A

= 4 [(Σ+B) + 2A] .

Next, we calculate the VCV matrix for the child’s genotypes. To do this, we
first consider the VCV matrix for their maternally or paternally inherited alleles
separately. Considering a pair of alleles inherited from a particular parent, if they
both had been inherited from that parent’s mother or both from that parent’s
father, those genotypes would have a covariance given by some element of the Σ
matrix. If they had been inherited from different parents, those genotypes would
have a covariance given by some element of the B matrix. We let P denote a ma-
trix, each of whose entries isthe probability that a pair of genotypes from x(m) are
drawn from the same grandparent; this same matrix also encodes the probability
that a pair of genotypes from x(f) are drawn from the same grandparent. By the
laws of Mendelian inheritance, P will have values of one along the diagonal, will
have values of 1/2 for any pair of genotypes corresponding to different chromo-
somes, and will have values between these two values for genotypes on the same
chromosome. Since the means of x(m) and x(f) are the same no matter which
grantparent they are inherited from,

Var
(
x(m)

)
= Var

(
x(f)

)
= P ◦Σ+ (1−P) ◦B,
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where ◦ is element-wise multiplication. Therefore,

Var (x) = Var
(
x(m)

)
+Var

(
x(f)

)
+ 2Cov

(
x(m),x(f)

)
= 2 [P ◦Σ+ (1−P) ◦B+A] .

Finally, we calculate the covariance between the child’s and parental genotype
vectors:

Cov (x,xp) = Cov
(
x(m) + x(f),xm + xf

)
= Cov

(
x(m),xm

)
+Cov

(
x(f),xf

)
+Cov

(
x(m),xf

)
+Cov

(
x(f),xm

)
= 2 [(Σ+B) + 2A] .

Projecting y onto x and xp, we obtain the following regression equation:

y = xβ + xpbp + e,

where e is the residual. Because of the random assignment of genotypes condi-
tional on the genotypes of the parents, the entries of β are (local average) causal
effects of each genotype on y (see Appendix I). The vector bp must then pick up, in
addition to parental genetic effects, any gene-environment correlations (including
population stratification).
Suppose we construct a polygenic index with weight vector w. The polygenic

index of the individual is xw, and the parental polygenic index is xpw. We will
show that when we regress y on xw and xpw, the coefficient associated with xw
will only be a weighted sum of the elements of the causal effect vector β and not
a function of bp.
Let α = [αg;αp] denote the population coefficients from regressing y onto xw
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and xpw. We calculate:

α =

[
Var (xw) Cov (xw,xpw)

Var (xpw)

]−1 [
Cov (xw, y)
Cov (xpw, y)

]
=

[
2w′ [P ◦Σ+ (1−P) ◦B+A]w 2w′ [(Σ+B) + 2A]w

4w′ [(Σ+B) + 2A]w

]−1

×
[

Cov (xw,xβ + xpbp + e)
Cov (xpw,xβ + xpbp + e)

]
=

[
2w′ [P ◦Σ+ (1−P) ◦B+A]w 2w′ [(Σ+B) + 2A]w

4w′ [(Σ+B) + 2A]w

]−1

×
[
2w′ [P ◦Σ+ (1−P) ◦B+A]β + 2w′ (Σ+B+ 2A)bp

2w′ [Σ+B+ 2A]β + 4w′ (Σ+B+ 2A)bp

]
=

[
w′ [P ◦Σ+ (1−P) ◦B+A]w w′ [(Σ+B) + 2A]w

2w′ [(Σ+B) + 2A]w

]−1

×
[
w′ [P ◦Σ+ (1−P) ◦B+A]β +w′ (Σ+B+ 2A)bp

w′ [Σ+B+ 2A]β + 2w′ (Σ+B+ 2A)bp

]
=

1

D

[
2w′ [(Σ+B) + 2A]w −w′ [(Σ+B) + 2A]w

w′ [P ◦Σ+ (1−P) ◦B+A]w

]
×
[
w′ [P ◦Σ+ (1−P) ◦B+A]β +w′ (Σ+B+ 2A)bp

w′ [Σ+B+ 2A]β + 2w′ (Σ+B+ 2A)bp

]
where, after simplifying,

D = w′ [(2P− 1) ◦ (Σ−B)]ww′ (Σ+B+ 2A)w

is the determinant of the inverted matrix in the first line of the above derivation..
Thus, for the child-PGI coefficient, we obtain

αg =
1

D
w′ (Σ+B+ 2A)ww′ [(2P− 1) ◦ (Σ−B)]β

=
w′ (Σ+B+ 2A)ww′ [(2P− 1) ◦ (Σ−B)]β

w′ [(2P− 1) ◦ (Σ−B)]ww′ (Σ+B+ 2A)w

=
(
w′ [(2P− 1) ◦ (Σ−B)]w

)−1
w′ [(2P− 1) ◦ (Σ−B)]β

which is a weighted sum of the true causal effects β. More specifically, it
is a generalized least squares (GLS) regression coefficient of the true effect sizes
onto the PGI weights, with GLS weight matrix (2P− 1) ◦ (Σ−B).
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For the parental PGI coefficient, we obtain

αp =
1

D

{
w′ [(2P− 1) ◦ (Σ−B)]ww′ (Σ+B+ 2A)bp

+w′ [P ◦Σ+ (1−P) ◦B+A]
(
wβ′ − βw′) (Σ+B+ 2A)w

}
= w′ (Σ+B+ 2A)ww′ (Σ+B+ 2A)bp

+
w′ [P ◦Σ+ (1−P) ◦B+A] (wβ′ − βw′) (Σ+B+ 2A)w

w′ [(2P− 1) ◦ (Σ−B)]ww′ (Σ+B+ 2A)w
,

which is a function of both β and bp.
We next consider two special cases.
First, suppose that we use the true genetic effect sizes on y as the PGI weights

(and all genetic variants with causal effects on y are included in the PGI), such
that w = β. In this case,

αg =
(
β′ [(2P− 1) ◦ (Σ−B)]β

)−1
β′ [(2P− 1) ◦ (Σ−B)]β = 1.

Also (wβ′ − βw′) = 0, so

αp =
[
β′ (Σ+B+ 2A)β

]−1
β′ (Σ+B+ 2A)bp,

which means that the coefficient on the parental PGI is simply a GLS regression
(with weight matrix Σ + B + 2A) of the parental coefficients onto the causal
genetic effects.
Second, suppose that there is no assortative mating, such that A = B = 0.

Then:
αg =

(
w′ [(2P− 1) ◦Σ]w

)−1
w′ [(2P− 1) ◦Σ]β.

Recall that Pij = 1/2, implying that 2Pij − 1 = 0 for each pair of SNPs, i and
j, that are on different chromosomes. Within a chromosome, if there is random
mating, then Σij decays much more quickly than Pij with distance between the
SNPs. This is because the matrix P is approximately fixed across generations
since it is related to the probability that an odd number of recombinations events
will have occurred between a pair of SNPs in the genome. In contrast, the elements
of Σ will decay by a factor of P in each generation of random mating. (This is
because there is a Pij chance that the ij correlation within a parent will be broken
by recombination events in each generation.) Thus, we expect the approximation

(2P− 1) ◦Σ ≈ Σ

to be very accurate. This gives us the expressions in the main text,

αg =
(
w′Σw

)−1
w′Σβ

αp =
(
w′Σw

)−1
w′Σbp,
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where each coefficient has a generalized-least-squares interpretation.
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